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Top of the Batch: Interviews and the Match†

By Federico Echenique, Ruy González, 
Alistair J. Wilson, and Leeat Yariv*

Most doctors in the National Resident Matching Program (NRMP) 
match with one of their  most preferred internship programs. 
However, surveys indicate doctors’ preferences are similar, sug-
gesting a puzzle: how can so many doctors match with their top 
choices when positions are scarce? We provide one possible expla-
nation. We show that the patterns in the NRMP data may be an 
artifact of the interview process that precedes the match. Our 
study highlights the importance of understanding market interac-
tions occurring before and after a matching clearinghouse. It casts 
doubts on analyses of clearinghouses that take reported prefer-
ences at face value. (JEL C78, I11, I18, J44)

The National Resident Matching Program (NRMP) has matched millions of doc-
tors to residency programs across the United States. In 2020 alone, 45,000 active 
applicants attempted to match with just over 37,000 positions. Match results reported 
by the NRMP for 2020 suggest comforting news for doctors: 46 percent of  freshly 
minted MDs from US schools were matched to their  first-ranked choice, while 71 per-
cent were matched to one of their  top-three choices. The 2020 figures are by no means 
an aberration. The fraction of applicants matched to their  first-ranked choice has been 
at least as high over the past two decades. We suggest these figures should not be taken 
at face value. In particular, we show that interactions outside of the main match—the 
interview process that precedes it—may be at least as important as the match itself.

Why should a large fraction of doctors matching to their  first-ranked residency be 
surprising? The algorithm governing the NRMP match implements a stable match-
ing over reported preferences. If applicants report similar preferences, only a few 
applicants can get their  most preferred option. For example, suppose 100 prospec-
tive residents are matched to 100 positions. Common preferences on both sides (an 
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assortative market) yield an outcome in which only one percent  of residents are 
matched to their  first-ranked program. As we show, even a small common compo-
nent in doctors’ preferences implies relatively few matches to  top-ranked hospitals.

One explanation for the NRMP outcomes is that applicants’ preferences are dia-
metrically opposed, with only a handful ranking each position as their top outcome. 
This stands in the face of survey data and estimation results suggesting the impor-
tance of preference commonalities (Rees-Jones 2018; Agarwal 2015). Another 
explanation might be that preferences are similar across participants, but that each 
doctor and hospital consider only their top- k  partners acceptable, as in Immorlica 
and Mahdian (2015). Matched participants would then have to receive a top- k  out-
come. As we demonstrate, this explanation too has shortcomings. First, it does not 
explain the relative prevalence of matches with  first-ranked partners. Second, for  
k  small enough to generate an effect, many applicants would be unmatched (see 
Arnosti 2015; Beyhaghi and Tardos 2019; Lee 2017).

We propose another story. In the months preceding the centralized match, appli-
cants submit their biographical and academic records, personal statements, and let-
ters of recommendation to hospitals.1 From these applications, the hospitals select 
a group to interview. The process used to determine who interviews with whom 
is decentralized with two important features. First, applications and interviews are 
costly—both market sides have limited capacity. Second, hospitals and doctors sub-
mit rankings to the NRMP only for those they interviewed with.2

We assume that hospitals’ and applicants’ preferences are decomposable into 
common and idiosyncratic components. For hospitals, the common component may 
reflect doctors’ academic performance, test scores, and the strength of their letters 
(Agarwal 2015). For doctors, it may reflect hospital rankings, quality of life in the 
local area, etc. In contrast, the idiosyncratic component reflects  match-specific val-
ues. Using this model of preferences we consider the  pre-match  interview selection 
process. Each candidate has a limit on the number of interviews they can attend,  k , 
while each hospital has a maximum number of interview slots they can offer,   k ′   . The 
decentralized interview process is then modeled as a stable  many-to-many match-
ing under the ( k ,   k ′    ) capacity constraints. In the centralized matching stage, par-
ticipants report rankings over interview partners only—their “ interview-truncated” 
preference.

Truncation induced by interviewing necessarily narrows agents’ original prefer-
ences. However, unlike the truncation to the top- k , it is endogenous. Participants’ 
preferences are linked through the stability of interviews, so a large fraction of pro-
spective doctors still end up matched—indeed, in our simulations, participants often 
end up with the same exact partner as in the centralized match with untruncated 
preferences. Moreover, the reported ranks for match outcomes are greatly inflated.

The presence of a common component in the preferences of prospective residents 
and hospitals is crucial for this conclusion. We show that with sufficient disagree-
ment in doctors’ preferences, interviews may cause matched partners’ reported rank 

1 See https://www.nrmp.org/ applying-interviewing-residency-programs/.
2 The 2019 NRMP Applicant Survey (available from NRMP 2019, available from nrmp.org) provides median 

respondent data across four  applicant types and 21  medical specialties. Of the 84 medians reported, 63 have per-
fectly coincident numbers for interviews attended and programs ranked, where 81 are  ± 1 . 

https://www.nrmp.org/applying-interviewing-residency-programs/
http://nrmp.org
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to go down, not up. While perfect agreement among doctors over hospital rankings 
will clearly lead to inflated rankings for matched programs under interview trunca-
tion, this obviously represents an extreme.3 Our main theoretical finding is that, in 
large markets, an arbitrarily weak  common component is sufficient for interviews 
to generate the pattern of  high-reported ranks for match partners.

As our  most general result is asymptotic, we complement it with an array of simu-
lations at  more moderate market sizes. Using the listed positions for the  submarkets 
that residents match within (anesthesiology through vascular surgery), we use our 
simulations to infer an  aggregate-level outcome at the NRMP scale. We illustrate the 
results in Figure 1, serving both as a guide for the puzzle that motivates us and the 
paper’s main result.

Figure 1 illustrates two measures for which data is available on NRMP outcomes: 
(a) The fraction of matched residents getting the hospital at the very top of their 
 rank order list; (b) Uniqueness, measured as the fraction of doctors with a unique 
stable match partner given the submitted  rank order lists. The figure illustrates simu-
lated outcomes under both deferred acceptance with the full preferences (the region 
labeled “DA”) and  interview truncation (the region labeled  “Int-DA”). In both fig-
ures we sweep across an array of possible preferences that modify the strength of 
the common component. On the horizontal axis we indicate the effect of increasing 
the common component’s weight within doctors’ preferences,   λ D    (with a residual 
weight  1 −  λ D    on the idiosyncratic component). The width of each region indicates 
the range in effect as we shift the  common component’s weight in hospitals’ prefer-
ences,   λ H    (where an arrow indicates the direction).

As mentioned, across two decades of annual NRMP matches, approximately one 
half of all matched residents obtain their  first-ranked outcome.4 Panel A of Figure 1 
illustrates that, while the high fraction matched to their  first-ranked outcome is pos-
sible under deferred acceptance, it requires a very particular form of preferences: 
hospitals with a heavy weight on the  common value (  λ H    close to one) and doctors 
with entirely idiosyncratic preferences (  λ D    close to zero). For all other preferences, 
our simulations indicate the fraction of  first-ranked matches is considerably lower. 
In particular, this statistic is close to zero whenever doctors place substantial weight 
on the common preference component.

While hospitals having a strong common component is consistent with NRMP 
survey data, the requirement that doctors’ preferences are almost completely idio-
syncratic contradicts ample survey evidence.5 Simulation results under  interview 
truncation in the region labeled  “Int-DA” illustrate our explanation. Our model of 
interviews leads to a  near opposite result to deferred acceptance: Except for very 
particular and empirically unlikely preferences—hospitals (doctors) with a small 
(large)  common-value component—the  NRMP-scale simulations lead to approxi-
mately half of the residents obtaining their  first-ranked outcome.

3 A related idea appears in Beyhaghi and Tardos (2019), which shows that interviews may increase the size of 
a match. See also Kadam (2015).

4 See Figure B.1 in online Appendix B for the  time series.
5 From the NRMP Director’s Survey (NRMP 2021), hospitals clearly place substantial weight on common 

features: test scores, recommendation letters, etc. However, the resident survey has  common-value components 
(“reputation of program,” having an “academic medical center program,” as well as quality of the residents, faculty, 
and educational curriculum) cited at similar frequencies to potentially idiosyncratic ones (“perceived goodness of 
fit”) as reasons for the ranking of programs.
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In panel B of Figure 1, we focus on another documented feature of the NRMP 
rankings: almost every doctor has a unique stable match partner. Using proprietary 
 rank order data from the NRMP, Roth and Peranson (1999) document small cores, 
where  doctor-proposing and  hospital-proposing deferred acceptance produce the 
same partner for 99.9 percent of the residents. Our simulation results in panel B of 
Figure 1 indicate the type of preferences that can generate this level of uniqueness 
within DA. The result that almost every participant has a unique stable match part-
ner is a generic feature across all preference weights under the  interview-truncated 
rankings (this is the  close-to-degenerate region labeled at the very top of the figure). 
In contrast, this empirical feature is only possible under the full ranking when one of 
the two sides’ preferences are primarily driven by a common component.

The idea that doctors’ reports in the residency match may not reflect true prefer-
ences is certainly present in other work. Hassidim et al. (2017) survey evidence of 
misreports in the NRMP, suggesting four possible explanations: proposers’ failure 
to identify the dominant strategy, mistrust in the mechanism,  nonclassical utility, 
and  self-selection. The last of these is closest to ours. In this vein, Chen and Pereyra 
(2019) consider  school choice problems where students “self-select” by only 
ranking schools they believe will plausibly admit them, showing evidence for this 
 self-selection in Mexican  high school applications. While the ranking of only those 
they interview with by doctors and hospitals is a manifestation of  self-selection, 
our theoretical analysis suggests a mechanism generating it, shedding light on its 
underpinnings and impacts.6

6 Lee and Schwarz (2017) also consider an interview process that precedes a centralized match. In their setting, 
workers are fully informed of their preferences, while firms view workers symmetrically at the outset and use 
costly interviews to infer their own preferences. In the NRMP context, Rees-Jones (2018) uses surveys to illustrate 
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Figure 1. Simulated  Matched-Resident Outcomes (NRMP scale)

Notes: Simulations under both DA and  Int-DA algorithms are used to assess outcomes across many market sizes  N .  
A composite response across 35,704 positions is then imputed across the speciality  submarkets (ranging in size 
from 22 to 9,127 positions) listed in the 2020 match report (NRMP 2020, Table 13).
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Our results have important implications for the NRMP, and the matching literature 
more broadly. Doctors participating in the  deferred-acceptance algorithm underly-
ing the match have incentives to truthfully report preferences (Roth and Peranson 
1999). Traditionally, economists have viewed the NRMP as an ideal  case study in 
 strategy-proof design. Our findings make clear that because reported preferences 
in the NRMP are filtered through the interview stage, they should be interpreted 
with caution. In particular, reported  high-rank matches cannot be read literally, and 
any conclusions drawn about welfare using estimated preferences from the match 
itself are suspect. This message is particularly stark given that our paper ignores 
strategic effects at the interview stage.7 That said, our approach also indicates some 
constructive ways forward and suggests the potential importance of accounting for 
interactions preceding centralized clearinghouses.

I. The Model

Our model is a variant of the standard  two-sided matching model (see, for exam-
ple, Roth and Sotomayor 1990), with an added interview stage.

A. Basic Definitions

A market is a triple   (H, D, U)  , where:  H  is a finite set of hospitals;  D  is a finite 
set of doctors; and  U =  (  ( u d  )  d∈D  ,   ( u h  )  h∈H  )   is a utility function profile (with  
  u d   : H ∪  {d}  → R  and   u h   : D ∪  {h}  → R  for each  d  and  h ).

A utility   u a    induces an ordinal preference   ⪰ a    over the relevant set of alternatives, 
where we assume throughout that the resulting ordinal preferences are strict. The 
 rank order of  b  in   u a    is one plus the number of   b ′    with   u a   ( b ′  )  >  u a   (b)  —a lower 
 rank order indicates a better ordinal outcome/higher ranking. In particular, agent 
 a ’s  most preferred match partner has  rank order 1. An agent  b  is unacceptable for  a  
if   u a   (a)  >  u a   (b)  .

A matching is a function  μ : H ∪ D → H ∪ D  with the properties that 
 μ (h)  ∈ D ∪  {h}  ,  μ (d)  ∈ H ∪  {d}  , and  μ (d)  = h  iff  μ (h)  = d . A matching  μ  is 
stable for a market   (H, D, U)   if   u a   (μ (a) )  ≥  u a   (a)   for all  a ∈ D ∪ H , and there is 
no   (d, h)  ∈ D × H  with   u d   (h)  >  u d   (μ (d) )   and   u h   (d)  >  u h   (μ (h) )  .

A  many-to-many matching is a function  μ : H ∪ D →  2   H∪D   with the properties 
that  μ (d)  ⊆ H ,  μ (h)  ⊆ D , and  h ∈ μ (d)   iff  d ∈ μ (h)  . When an agent  a  is unas-
signed, we have  μ (a)  = ∅ . Given a pair of positive integers   (k,  k ′  )  , a  many-to-many 
matching  μ  is pairwise stable for   (k,  k ′  )   if

•   |μ (d) |  ≤ k  and there is no  h ∈ μ (d)   with   u d   (h)  <  u d   (d)  ;
•   |μ (h) |  ≤  k ′    and there is no  d ∈ μ (h)   with   u h   (d)  <  u h   (h)  ;
• There is no   (h, d)   such that  d ∉ μ (h)   and any one of the following holds:
  —  u d   (h)  >  u d   ( h ′  )   and   u h   (d)  >  u h   ( d  ′  )   for some   ( h ′  ,  d  ′  )  ∈ μ (d)  × μ (h)  ;

doctors’ significant “misreporting” in the match.  Rees-Jones and Skowronek (2018) use an online experiment with 
 post-match residents, where 23 percent misrepresent their preferences in an incentivized  NRMP-like matching task.

7 See Beyhaghi, Saban, and Tardos (2017) for an analysis of some strategic implications of interviews and 
Manjunath and Morrill (2021) for the effects of changes in the interviewing costs on doctors’ welfare.
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  —  u d   (h)  >  u d   ( h ′  )  ,   u h   (d)  >  u h   (h)  , and   |μ (h) |  <  k ′    for some   h ′   ∈ μ (d)  ;
  —  u d   (h)  >  u d   (d)  ,   u h   (d)  >  u h   ( d  ′  )  , and   |μ (d) |  < k  for some   d ′   ∈ μ (h)  .

B. Interview Schedules

In our model, doctors and hospitals first schedule interviews and then participate 
in the match.

An interview schedule is a  many-to-many matching. Given a pair of integers 
  (k,  k ′  )  , a   (k,  k ′  )  -constrained interview schedule is a  many-to-many matching  μ  with 
  |μ (d) |  ≤ k  and   |μ (h) |  ≤  k ′    for all  d  and  h . Each doctor can interview with at most  
k  hospitals, and each hospital can interview at most   k ′    doctors.

Given an interview schedule  μ , agents’  interview-truncated preferences are deter-
mined by setting   u a   (b)  <  u a   (a)   for all  b ∉ μ (a)  . That is,  interview-truncated pref-
erences rank all interviewed agents as in the original preferences, and set all other 
agents as unacceptable.

The timing in our model is: (i) An interview schedule is determined as the 
 doctor-optimal  many-to-many   (k,  k ′  )  -stable matching;8 (ii) Doctors and hospitals 
report their  interview-truncated preferences as inputs into  doctor-proposing DA. 
The outcome is the  doctor-optimal stable matching on the  interview-truncated pref-
erences. We term this  two-step process “ Int-DA”: the Interview process followed by 
Deferred Acceptance.

A  doctor-optimal interview schedule can be found algorithmically using the 
“ T-algorithm” (see Blair 1988; Fleiner 2003; Echenique and Oviedo 2006). We 
assume it is the result of a decentralized interview scheduling process. While mod-
eling explicitly the interview process would certainly be desirable, our focus is on 
the tension between a “pure” application of DA, and one that is preceded by inter-
views. Assuming a stable outcome at the interview stage provides us with a simple, 
tractable model.9 A richer model might allow for some information to be transmitted 
at the interview stage. This could further inflate rank differences for two reasons.10 
First, some doctors and hospitals may learn from interviews that they are not accept-
able to one another, thereby limiting further the set of ranked participants. Second, 
participants would not discover others whom they would, with full information, 
rank very highly but that they did not interview with.

We denote the final matching from  Int-DA as   μ   I  . We compare   μ   I   to the match-
ing obtained from the  doctor-proposing DA algorithm using agents’ original pref-
erences,   μ   DA  .

8 Arguably, the  doctor-optimal stable matching at the interview stage yields a smaller difference between 
reported and actual ranks than other selections of stable matchings.

9 In  one-to-one matching markets, experimental evidence suggests decentralized interactions yield stable out-
comes at high rates (see Echenique and Yariv 2013). Melcher, Ashlagi, and Wapnir (2018) propose a  stable-matching 
algorithm for internship interviews. For more on the theory of  many-to-many matching, see Sotomayor (1999) and 
Konishi and Ünver (2006).

10 Indeed, while simulations where the idiosyncratic component is only revealed during interviews yield qualita-
tively similar results, quantitatively they do increase the effects (see Figure B.6 in online Appendix B).
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II. The Impacts of Interviews

We start by illustrating that when doctors’ preferences are misaligned, interviews 
alone cannot explain the findings in the data:  Int-DA does not necessarily yield 
 better-ranked partners in submitted preferences. We then show that some preference 
alignment, in the presence of interviews, leads to patterns similar to those in the 
data.

A. Preference Misalignment

To illustrate that interviews can have the opposite effect when doctors’ prefer-
ences are misaligned, consider a matching market with three doctors,   { d 1  ,  d 2  ,  d 3  }   , 
and four hospitals,   { h 1  ,  h 2  ,  h 3  ,  h 4  }  .11 Hospitals’ preferences are common: they all 
prefer   d 1    to   d 2   ,   d 2    to   d 3   , and   d 3    to staying unmatched. Doctors rank all hospitals as 
acceptable, with preferences given by (first to last):

  d 1   :   h 1   ,   h 3   ,   h 2   ,   h 4   ;
  d 2   :   h 2   ,   h 3   ,   h 1   ,   h 4   ;
  d 3   :   h 3   ,   h 1   ,   h 4   ,   h 2   .

Under DA,   d i    matches to   h i   . So the  rank order of   d 3   ’s match is  1 .
Suppose interview constraints are  k =  k ′   = 2 . All doctors want to interview 

with   h 3   , but only   d 1    and   d 2    are able to. The resulting interview schedule is:   d 1    with   
h 1    and   h 3   ;   d 2    with   h 2    and   h 3   ; and   d 3    with   h 1    and   h 4   .

Given the  interview-truncated preferences,   d i    matches with   h i    for  i = 1, 2 , but   
d 3    is matched with   h 4   . The  Int-DA  rank order of   d 3   ’s match is therefore  2 , so the 
presence of interviews leads her to a strictly lower  rank order than under DA with-
out interviews. Furthermore, the outcome under  Int-DA is unstable for the original 
preferences.

In this example, there is substantial disagreement between doctors’ preferences—
there are no pairwise comparisons of hospitals   { h 1  ,  h 2  ,  h 3  }   on which doctors agree. 
In contrast, our discussion of the NRMP data emphasized the role of common com-
ponents in the doctors’ and hospitals’ preferences. We now show that some degree 
of agreement between doctors’ ranking of hospitals rules out such examples, and 
interviews can explain observed high match ranks.

B. Aligned Preferences

We start with the extreme case where doctors’ preferences are common.

PROPOSITION 1: Suppose  k =  k ′    and that doctors’ preferences are identical. For 
any doctor  d , the  rank order of   μ   I  (d)   in her  interview-truncated preference is always 
weakly lower than the  rank order of   μ   DA  (d)   in her actual preference   ⪰ d   .

11 It is straightforward to construct more intricate examples with equal numbers of doctors and hospitals.
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The proof appears in online Appendix A. Intuitively, when doctors’ preferences are 
common, only one of the doctors under DA is matched to the  highest-ranked hospital, 
one to the  second-highest, etc. In particular,  n − k  doctors are matched to a hospital 
ranked below their top  k . In contrast, interviews allow for presorting of doctors to hos-
pitals they have a chance of matching with. Interviews also limit how low a matched 
hospital can be ranked in the reported preferences: it can never be lower than  k .

The proposition assumes  k =  k  ′    mainly for expository reasons. In our main result 
below, we allow the two capacities to differ.

C. Large Markets

We now demonstrate that perfect preference alignment is not necessary. As long 
as there is a  common-value component in agents’ preferences, however small, the 
message of our first result holds in large markets.

We expand the model to account for market size and randomly generated 
preferences. For each  n , let   E n   =  ( D n  ,  H n  ,  U n  ,  k n  ,  k  n  ′  )   denote a market, where 
  D n   =  { d 1  , … ,  d n  }  ,   H n   =  { h 1  , … ,  h n  }  , each utility function is randomly drawn with 
a  common-value and idiosyncratic component, and   k n    (  k  n  ′   ) is the limit on doctors’ 
(hospitals’) interviews. Specifically, suppose that

   u  d  n  (h)  =  λ D    c h   +  (1 −  λ D  )   η d,h    and   u  h  n  (d)  =  λ H    c d   +  (1 −  λ H  )   η h,d  , 

for all  d ∈  D n    and  h ∈  H n   , where   λ D  ,  λ H   ∈  (0, 1)  . Moreover, assume that 
  u  a  n  (a)  = 0 . The  common-value components   c h    and   c d    are crucial for our results, but 
need not dominate doctors’ utilities:   λ D  ,  λ H   > 0  may be arbitrarily small.

Suppose that   c h   ,   c d   ,   η d,h   , and   η h,d    are all drawn from absolutely continuous distri-
butions with support on a convex subset of   R +   . Let   μ  n  I    denote the matching result-
ing from the  Int-DA process in the  n -sized market   E n   , and   μ  n  DA   the corresponding 
outcome of the  doctor-proposing DA; these matchings are random and depend on 
realized utilities. The  Int-DA procedure determines a matching   μ  n  I    by choosing a 
  ( k n  ,  k  n  ′  )  -constrained interview schedule as the  doctor-optimal  many-to-many stable 
matching, followed by the  doctor-proposing DA using the induced preferences.

PROPOSITION 2: Let   E n   =  ( D n  ,  H n  ,  U n  ,  k n  ,  k  n  ′  )   be a sequence of markets satisfying 
our assumptions. Fix an integer sequence   M n   ≥ 1 , and let   D  n  ′    be the set of doctors  
d ∈  D n    in market   E n    for whom the rank of   μ  n  I   (d)   in their  interview-truncated pref-
erences is   M n    positions above the rank of   μ  n  DA  (d)   in their true preference. If   k n    and   
M n    are  o (n)  , then, for any  θ > 0 ,

    lim  n→∞   P (  1 _ n   |    D  n  ′   |   ≥ 1 − θ)  = 1. 

The proof of Proposition  2 appears in the Appendix. The idea underlying it is 
simple. Consider DA, let  ε > 0 , and fix   M n   = 1 . By Lee (2017), when  n  is large, 
with high probability, the set   A n   (ε,  (c, η) )   of doctors who are within  ε  of their “tar-
get” assortative utility in DA accounts for at least  1 − θ / 2  of all doctors. Let 
 B ( c d  , n)   be the event that fewer than   k n    hospitals provide doctor  d  a utility greater 
than  d ’s target utility. We denote by   β n    the probability that a fraction of at least  
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θ / 2  doctors have a “small” number (at most   k n   ) of hospitals above their tar-
get utility. We show that for  n  large enough,   β n   < π / 2 , and by Lee (2017), 
 P (  1 _ n   |    A n   (ε,  (c, η) )  |   ≥ 1 − θ / 2)  > 1 − π / 2 . Thus, the event that  B ( c d  , n)   is false 
for a fraction  ≥ 1 − θ / 2  of doctors and    1 _ n   | A n   (ε,  (c, ε) ) |  ≥ 1 − θ / 2  has probability  ≥  
(1 − π / 2)  +  (1 − π / 2)  − 1 = 1 − π . At the intersection of these conditions, for a 
fraction  ≥  (1 − θ / 2)  +  (1 − θ / 2)  − 1 = 1 − θ  of  d ∈  D n   , we have that  B ( c d  , n)   is 
false and  d ∈  A n   (ε)  . Hence, for a fraction  ≥ 1 − θ  of  d ∈  D n   , there are more than   k n    
hospitals above their target utility, and they are within  ε  of their target utilities.

Convergence rates for the  large-market result in Proposition 2 are modest, with 
(poly-)logarithmic or polynomial growth in the relevant “approximation guaran-
tees”  θ  and  π . In words, the market size needed for Proposition 2’s conclusions does 
not grow too quickly with the approximation guarantees. This message comple-
ments the simulations in Section III, which assume (arguably) realistic market sizes, 
and can be formalized as follows (a proof is in online Appendix A):

PROPOSITION 3: Let   E n    and   D  n  ′    be as in the statement of Proposition  2. Fix 

 θ, δ ∈  (0, 1)  . Then  P (  1 _ n   |    D  n  ′   |   ≥ 1 − θ)  ≥ 1 − δ  for  n = Θ (  (ln (1 / π) )    4 )   as  

π → 0 , and  n = Θ (  (1 / θ)    4 )   as  θ → 0 .

III. Simulations

Our theoretical findings raise three important questions. The first regards mar-
ket size. Proposition 2 is asymptotic, and it is natural to consider whether inter-
views matter for smaller, more realistic, market sizes. The second question regards 
unmatched agents. One might worry that  interview-truncated preferences give rise 
to large numbers of unmatched participants, beyond those observed in the NRMP. 
The final question regards stability. Ideally, the difference between outcomes under 
DA and the  interview-truncated DA procedure would be small.

We address these questions using extensive numerical simulations across the 
preference parameters   λ D    and   λ H   . In total, we examine 275 different parameter-
izations, representing approximately 1 million simulated participants. We also con-
sider a variety of robustness checks. Section B.2 in online Appendix B provides a 
summary and  more detailed results. To compactly display our main results, Table 1 
aggregates our findings across balanced markets ( N  doctors and  N  positions) corre-
sponding to the many smaller  submarkets that compose the NRMP.12 We examine 
three algorithmic solutions:13

•  Doctor- and  hospital-proposing deferred acceptance (DA).

12 For each pair  ( λ D  ,  λ H  )  and simulation proportion   f N   , we fit a linear model for  log(  f N   / (1 −  f N  ))  against 
 log(N) , where goodness of fit for this approach is shown in Figure B.4 in online Appendix B. We predict the pro-
portion    f ˆ   ( N j  )  for each  submarket of size   N j    listed in Table 13 of NRMP (2020) (from 22 positions for Pediatrics/
Medical Genetics to 9,127 for Internal Medicine). We then aggregate across these  submarkets to form a composite 
NRMP measure for  f  over the   N T   = 35,704  positions as   ∑ j  

     ( N j  / N T  )   f ˆ   ( N j  ) .
13 To assess robustness, we also conducted simulations examining: (i) imbalanced markets; (ii) smaller/larger 

interview capacities; (iii) more extreme values for   λ D    and   λ H   ; (iv) an alternative interview selection method where 
hospitals only used the doctor’s common components. Online Appendix B presents details on these simulations. 
The main effects of the interview stage are similar across these exercises.
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•  The stable interview allocation with  k =  k ′   = 5  slots per position, fol-
lowed by both doctor- and  hospital-proposing deferred acceptance on the 
 interview-truncated preferences ( Int-DA).14

•  Doctor- and  hospital-proposing deferred acceptance on preferences truncated 
to the  k =  k ′   = 5   top-ranked options ( Tr-DA).

Table 1 provides  NRMP-scaled simulation outcomes for six different   ( λ D  ,  λ H  )   
pairs. Simulations with  Tr-DA were added to distinguish the pure effect of trunca-
tion from the interview process our paper focuses on.15 Panel A of Table 1 provides 

14 To mirror the theory section, we select the  doctor-optimal stable interview schedule.
15 In simulations where we allow for information to be realized at the interview stage, hospitals rank doctors 

purely on the common component. The idiosyncratic component is observed at the interviews, and used in the DA 
stage. Results are similar to the  Int-DA procedure (see Figure B.4 in online Appendix B) and suggest that simpler 
procedures that incorporate both sides’ preferences can be used.

Table 1—Simulation Outcomes Scaled to NRMP Size 

  λ H   = 1 / 4   λ H   = 3 / 4 

  λ D   = 1 / 4   λ D   = 1 / 2   λ D   = 3 / 4   λ D   = 1 / 4   λ D   = 1 / 2   λ D   = 3 / 4 

Panel A. Matching outcomes
Unmatched   [DA: 0.0%,  NRMP: 5.4%]  a

 Int-DA 6.0 6.4 8.1 8.2 6.5 5.6
 Tr-DA 26.1 72.1 96.0 27.1 71.7 96.2

 First-ranked program   [NRMP: 48.1%]  a

DA 2.5 0.2 0.1 26.5 3.0 0.2
 Int-DA 43.5 38.7 32.5 49.1 43.7 41.4
 Tr-DA 22.7 4.1 0.2 31.2 5.2 0.2

 Top-three–ranked program match   [NRMP: 73.2%]  a

DA 7.4 0.5 0.3 48.4 8.1 0.6
 Int-DA 81.6 79.6 75.0 81.6 81.5 81.2
 Tr-DA 55.0 15.1 1.3 59.1 17.2 1.3

Panel B. Core size, similarity to DA, and stability
Same partner under proposer change—Matched   [NRMP: 99.9%]  b

DA 41.9 90.0 99.5 99.3 99.2 98.8
 Int-DA 99.9 99.9 100.0 100.0 99.9 99.8

Identical partner to DA—Matched

 Int-DA 73.8 82.6 79.8 80.1 74.6 81.0

Proportion blocking programs in  Int-DA

Matched 0.1 0.6 1.0 0.1 0.7 1.8
Unmatched 9.1 7.3 8.3 19.2 24.6 34.3

Notes: All figures are displayed as percentages. Table uses an estimated  logit-model for each   ( λ D  ,  λ H  )   pair to form 
an estimate at NRMP scale ( ∼ 35,000 positions) using the  submarket sizes listed in NRMP (2020). See the online 
Appendix for tables corresponding to different market sizes.

Source: Results and Data: 2020 Main Residency Match, NRMP (2020, Table 15; available from nrmp.org)
a Average for US MD seniors in 2016–2020. 
b  Figure reported for main NRMP match in Roth and Peranson (1999). Smaller thoracic surgery market ( N ≃ 120  ) 
has a 99.6 percent unique match for five reported years in 1991–1996 (Roth and Peranson 1999, Tables 1 and 3).

http://nrmp.org
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three characteristics of match outcomes: (i) the fraction of unmatched participants; 
(ii) the fraction of doctors matched to their  first-ranked program; and (iii) the pro-
portion of doctors matched to a  top-three–ranked program.

Because our simulated markets have the same participant volume on each side, 
with all possible matches acceptable, the benchmark for DA with full preferences 
predicts no unmatched doctors. In contrast, the NRMP data indicates that 5.8 per-
cent of US seniors are unmatched. The first result from our simulations in Table 1 
illustrates that the  two-stage  Int-DA process leads to a similar unmatched rate as 
the NRMP. Doctors in our simulations are unmatched after the  Int-DA process at a 
5.5 percent rate. Moreover, this proportion does not change substantially with either 
market size or the common weight. In contrast, a direct truncation to the  top-five 
participants on the other side leads to substantially more unmatched participants. 
Moreover, the unmatched rate grows sharply with increases in  N  and  λ .

The next pair of results from the  Int-DA simulations again match the NRMP data: 
a large fraction of doctors are matched to  top-ranked hospitals. Looking to NRMP 
data from the past five years, 48 percent (73 percent) of US MD seniors are matched 
to their  first-ranked ( top-three–ranked) program. The  Int-DA simulations indicate 
 similarly-sized effects to the observed NRMP figures, at 40–50 percent (75–82 per-
cent).16 In contrast, the pure DA algorithm on the full preference lists implies sub-
stantially lower rates of  top-ranked outcomes—matches to the  first-ranked program 
are only found at substantial rates when hospitals have strong common components, 
and doctors are almost fully idiosyncratic (as depicted in Figure 1).

In panel B of Table 1 we turn to other observed match outcomes. These outcomes 
are not part of our explanation of reduced match ranks, but serve to evaluate the 
empirical relevance of our interviews model. The first outcome is motivated by Roth 
and Peranson’s (1999) finding that NRMP data exhibit small cores. Using NRMP 
ranking data from the 1990s, they examine the change in outcomes moving from the 
doctor- to the  hospital-proposing DA. They find that 99.9 percent of doctors receive 
the same outcome, implying a unique stable partner. In the “Same partner under 
proposer change” rows we mirror this exercise. Our DA simulations get close to the 
NRMP figure only with heavy weights on the common component. While most par-
ticipants across each of the simulations do have a unique stable partner, the minority 
with multiple partners are at least an order of magnitude larger than in Roth and 
Peranson (1999). However, changing the proposing side over the  interview-truncated 
rankings from  Int-DA indicates  much closer effects to the NRMP field study.

Our simulations of the  Int-DA procedure show that it can reproduce stylized 
results reflective of the observed NRMP figures—over unmatched rates, over the 
fraction of  first-ranked outcomes, and over the small cores found in  rank order list 
data. Moreover, the  Int-DA process does so generically, across market sizes and the 
 common-preference weights.17

16 The  Int-DA fraction matched to their  first-ranked program does increase slightly as we increase  N  (see 
Tables B.1–B.6 in online Appendix B) and as we decrease   λ D   /increase   λ H   .

17 We also examined imbalanced markets with an excess of doctors. The  Int-DA results for these simulations 
are qualitatively similar. However, we note that DA results allowing imbalance exhibit more frequent unique stable 
matchings  (Ashlagi, Kanoria, and Leshno 2017; see also Tables B.7 and Figure B.3 in online Appendix B).
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Given the fit with observed data regularities, a natural question regards the differ-
ence between outcomes under  Int-DA and standard DA. The final set of results in 
Table 1 speaks to this question.

The “Identical partner to DA” row directly contrasts the  Int-DA and DA 
match outcomes. Our results illustrate that the large majority of matched doctors 
( ∼ 75–80 percent) in the  Int-DA procedure are matched to the exact same partner 
they would have matched with under DA with full preferences reports.18 While four 
of every five doctors are entirely unaffected by the interview process, one in five 
being affected is clearly far from negligible.19

In the last section of Table 1, we evaluate the effects on stability. For each doc-
tor in our simulations we calculate the proportion of programs with which they 
form a blocking pair. We report the average proportion, distinguishing between 
matched and unmatched doctors. Matched doctors exhibit some instability, despite 
both stages in the  two-stage process being chosen to select stable outcomes. 
Averaging across parameterizations, a blocking pair is detected for matched doc-
tors 0.7 percent of the time. Unsurprisingly, instabilities are more substantial for 
unmatched doctors. A randomly chosen hospital yields a blocking pair between 
8 percent and 34 percent of the time for each unmatched doctor, depending on the  
parameterization.

IV. Conclusion

Much of the matching literature has focused on the centralized clearinghouse 
governing the match of  newly minted doctors and residency positions. We illustrate 
the possibility that decentralized interactions preceding the match—namely, inter-
views—may dramatically impact ultimate outcomes.

For the NRMP, our results imply that empirical estimations based on preferences 
submitted to the clearinghouse should not be taken at face value. More broadly, 
beyond the NRMP, our paper suggests that interactions outside of the clearinghouse 
can have dramatic effects on outcomes.

Our model focuses on the role interviews can have purely in terms of selection. 
In our setting, there is no constructive role for information acquisition during the 
interviews (see, however, Figure B.6 in online Appendix B, for one model vari-
ant allowing for information transmission during the interviews). Our algorithmic 
approach offers a base for future research to explore richer interactions preceding 
matching clearinghouses.

18 In a series of robustness exercises, we also examine  balanced-market simulations with different values of  k  
(see Tables B.8–B.11 and Figure B.5 in online Appendix B), indicating that the DA and  Int-DA outcomes become 
more similar as  k  increases. Nonetheless, we still find that, among matched doctors,  ∼ 75 percent get the same exact 
match as under DA even when  k = 2 . 

19 For those matched to distinct partners under  Int-DA and DA, matches tend to be close in ranking terms. See 
Figure B.7 in online Appendix B for illustration.
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Appendix: Proof of Proposition 2

Let   k  n  ′′  =  k n   +  M n   , and note that   k  n  ′′   is  o (n)  .
With some notational abuse, we drop   λ   D   and  1 −  λ   D  , and write   c d    for   λ   D   c d   ,   η d,h    

for   (1 −  λ   D )   η d,h   , etc. This  rescaling implies that utilities are sums of the common 
and private value components:   u  d  n  (h)  =  c h   +  η d,h    and   u  h  n  (d)  =  c d   +  η h,d   . The prob-
ability distributions are  rescaled correspondingly, but remain absolutely continuous. 
Without loss of generality, we assume distributions have compact support (oth-
erwise, we can choose a compact set that accumulates large enough probability). 
Moreover, we take the support to be   [0, 1]  .

Let  D =  ∪ n    D n    and  H =  ∪ n    H n   . Consider tuples   (c, η)  , with  c =   ( c a  )  a∈H∪D    and

  η =  (  ( η a,b  )   (a,b) ∈H×D
  ,   ( η a,b  )   (a,b) ∈D×H

  ) . 

The tuples   (c, d)   are endowed with the product probability measure from the 
i.i.d. distributions described.

Let  G  denote the cumulative distribution function corresponding to   c d   . Fix 
 θ, π ∈  (0, 1)  . Choose   c   ⋆   and  ε, δ ∈  (0, 1)   such that  1 − G ( c   ⋆ )  + δ < θ / 4  while  
0 < P ( c h   +  η d,h   >  c   ⋆  + 1 + ε)  . These choices are possible due to the absolute 
continuity of the distributions of   c d   ,   c h   , and   η d,h   . Write  p ( c   ⋆ )   for  P ( c h   +  η d,h   >  
c   ⋆  + 1 + ε)  .

If agents match assortatively based on the common component, a doctor  d  should 
be able to find a hospital  h  for which it has idiosyncratic utility close to  1 , and this 
hospital should provide  d  with (approximately) the same utility   c d   + 1  as it receives 
from matching with  d . Think of   c d   + 1  as  d ’s “target utility.” Let

   A n   (ε,  (c, η) )  =  {d ∈  D n   :  c d   + 1 − ε <  u d   ( μ  n  DA  (d) )  <  c d   + 1 + ε}  

be the doctors for which this target is achieved (in DA), up to  ε . We prove that, when  
n  is large enough, with large probability, a fraction of at least  1 − θ / 2  doctors are 
in   A n   (ε,  (c, η) )  .

Consider the number of hospitals ranked above a doctor’s adjusted target utility   
c d   + 1 + ε . Let

  B ( c d  , n)  =  { |  h ∈  H n   :  c h   +  η d,h   >  c d   + 1 + ε |   ≤  k  n  ′′ }  

be the event that fewer than   k  n  ′′   hospitals provide  d  a utility greater than  d ’s target 
utility. We denote by   β n    the probability that a fraction of at least  θ / 2  doctors have a 
“small” number, at most   k  n  ′′  , of hospitals above their target utility.

We prove that for  n  large enough,   β n   < π / 2  and  P (  1 _ n   |    A n   (ε,  (c, η) )  |    
≥ 1 − θ / 2)  > 1 − π / 2 . Thus, the event that  B ( c d  , n)   is false for a fraction  
≥ 1 − θ / 2  of doctors and the event   (  1 _ n   | A n   (ε,  (c, η) ) |  ≥ 1 − θ / 2)   holds has proba-
bility  ≥  (1 − π / 2)  +  (1 − π / 2)  − 1 = 1 − π . At the intersection of these events, 
it holds for a fraction  ≥  (1 − θ / 2)  +  (1 − θ / 2)  − 1 = 1 − θ  of  d ∈  D n    that 
 B ( c d  , n)   is false and  d ∈  A n   (η)  . Hence, for a fraction  ≥ 1 − θ  of  d ∈  D n    there are 
more than   k  n  ′′   hospitals above their adjusted target utility, and they are within  ε  of 
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their target utilities, hence below the adjusted target. The  rank order of any partner 
in   μ   I   is at most   k n   . Since   M n   =  k  n  ′′  −  k n   , these statements prove the proposition.

To complete the proof, we present the required calculations.
If   c d   ≤  c   ⋆  , then

(A1)   P (B ( c d  , n) )  = P (  ∑ 
h∈ H n  

     1  c h  + η d,h  > c d  +1+ε   ≤  k  n  ′′ )  

  ≤ P (  1 _ n    ∑ 
h∈ H n  

     1  c h  + η d,h  > c   ⋆ +1+ε   ≤ p ( c   ⋆ )  −  (p ( c   ⋆ )  −    k  n  ′′  _ n  ) )  

  ≤ exp (− 2   (p ( c   ⋆ )  −    k  n  ′′  _ n  )    
2

  n)  

by Hoeffding’s inequality (observe that, eventually,  p ( c   ⋆ )  −    k  n  ′′  _ n   > 0 ).
Let

     β n   = P ( |   {d ∈  D n   : B ( c d  , n) }  |   > nθ / 2)  

  ≤ P 
(

   | {d ∈  D n   : B ( c d  , n)  and   c d   ≤  c   ⋆ } |     


    
 Z n  

    +    | {d ∈  D n   :  c d   >  c   ⋆ } |   


   
 Y n  

    > nθ / 2
)

  

  ≤ P (  1 _ n    Z n   + 1 − G ( c   ⋆ )  + δ > θ / 2)  + P (  1 _ n    Y n   > 1 − G ( c   ⋆ )  + δ) . 

The first inequality follows by counting all  d  with   c d   >  c   ⋆   as if  B ( c d  , n)   were true, 
so the random variable   Y n    counts all  d ∈  D n    with   c d   >  c   ⋆   as if they were in  B ( c d  , n)  .

The second inequality is a truncation exercise, partitioning the probability space 
into two events. The first is    1 _ n    Y n   ≤ 1 − G ( c   ⋆ )  + δ  and the second    1 _ n    Y n   > 1 − 
G ( c   ⋆ )  + δ . Under the second event,    1 _ n    Z n   +   1 _ n    Y n   > θ / 2  as  1 − G ( c   ⋆ )  + δ > θ / 2 . 
Under the first event, the inequality is obtained by raising    1 _ n    Y n    to  1 − G ( c   ⋆ )  + δ .

Applying Hoeffding’s inequality again,

(A2)  P (  1 _ n    Y n   > 1 − G ( c   ⋆ )  + δ)  ≤ exp (− 2  δ   2  n) . 

Now,

(A3)  P ( Z n   > n (θ / 2 −  [1 − G ( c   ⋆ )  + δ) ] )  ≤ P ( ∪ d∈ D n     B ( c d  , n) )  |  c d   =  c   ⋆ ) 

  ≤   ∑ 
d∈ D n  

   P (B ( c d  , n)  |  c d   =  c   ⋆ )  

  ≤ nexp (− 2   (p ( c   ⋆ )  −    k  n  ′′  _ n  )    
2

  n) , 

where the first inequality follows as  n (θ / 2 −  (1 − G ( c   ⋆ )  + δ) )  ≥ 1 , and the prob-
ability of  B ( c d  , n)   is maximized when   c d   =  c   ⋆  .

Choose  n  such that

(A4)  n (θ / 2 −  [1 − G ( c   ⋆ )  + δ] )  > 1, 
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(A5)  exp (− 2  δ   2  n)  < π / 4, 

(A6)  nexp (− 2   (p ( c   ⋆ )  −    k  n  ′′  _ n  )    
2

  n)  < π / 4, 

(A7)   and P (  1 _ n   |    A n   (ε,  (c, η) )  |   ≥ 1 − θ / 2)  > 1 − π / 2. 

Observe that (A4) is possible as  θ / 2 −  [1 − G ( c   ⋆ )  + δ]  > 0 . Inequality  (A6) 
requires   k  n  ′′   to be  o (n)  , which holds by hypothesis, and our choice of   c   ⋆  , to ensure that 
 p ( c   ⋆ )  −  k  n  ′′  / n > 0  is eventually bounded away from zero. Inequality (A7) is possi-
ble by Theorem 1 of Lee (2017).

By (A2),(A3),(A5), and (A6), we obtain that

(A8)   β n   ≤ nexp (− 2   (p ( c   ⋆ )  −    k  n  ′′  _ n  )    
2

  n)  + exp (− 2  δ   2  n)  < π / 2. 

Statements (A7) and (A8) provide the required bounds. ∎
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