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Abstract
In repeated games, where both collusive and noncollusive outcomes can be supported as
equilibria, it is crucial to understand the likelihood of selection for each type of equilibrium.
Controlled experiments have empirically validated a selection criterion for the two-player repeated
prisoner’s dilemma: the basin of attraction for always defect. This prediction device uses the game
primitives to measure the set of beliefs for which an agent would prefer to unconditionally defect
rather than attempt conditional cooperation. This belief measure reflects strategic uncertainty
over others’ actions, where the prediction is for noncooperative outcomes when the basin measure
is full, and cooperative outcomes when empty. We expand this selection notion to multi-player
social dilemmas and experimentally test the predictions, manipulating both the total number of
players and the payoff tensions. Our results affirm the model as a tool for predicting long-term
cooperation, while also speaking to some limitations when dealing with first-time encounters.
(JEL: C73, C92, D91)

1. Introduction

Identifying which of many possible equilibria best captures economic behavior is
of central importance for applications with repeated interactions. For example, in
models of oligopoly, both collusive and noncollusive equilibria can arise. To help guide
assumptions over equilibrium selection, experimental work has sought to uncover
simple theoretical criteria that can predict the likelihood of collusion based on
primitives such as payoffs and discount rates. Thus far, the main body of experimental
work on selection has focused on the canonical two-player indefinitely repeated
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prisoner’s dilemma (RPD). However, it is unknown to what extent the predictive
criteria from two-player environments can be used to predict selection in games with
more than two players.

The basin of attraction for always defect (Blonski and Spagnolo, 2001, 2015) has
been shown to simply organize experimental data in a meta-study of two-player RPD
games (Dal Bó and Fréchette, 2018). The measure’s calculation inputs are stage-game
payoffs and the discount factor. The measure’s output is the set of beliefs on the other
player choosing to conditionally cooperate for which permanent defection is a best
response. The wider the set of beliefs where defection is a best response, the greater
the risk in attempting to cooperate, which is why this measure is thought of as a
proxy for uncertainty over others’ behavior (i.e., strategic uncertainty). Experimental
data starting with Dal Bó and Fréchette (2011) show that when the theoretical size
of the always defect basin is high (low), observed cooperation rates tend to be low
(high). Furthermore, when the basin size is less than (greater than) half, it aligns
with the concept of risk dominance. Therefore, this simple ordinal property serves as
a clear line-in-the-sand for predicting regions where we expect/do not expect collusive
outcomes.

Our paper focuses on a simple and relevant extension of the model to more than
two players. In environment with N players, an agent must assess the chances that
multiple other players will cooperate. We develop two benchmarks to extend the
measure of strategic uncertainty. A natural theoretical benchmark is an independent-
belief extension, which considers symmetric and independent beliefs about each of
the other players. At the other extreme, we also consider a setting where beliefs
about other players are perfectly correlated. In the perfectly-correlated extension,
the addition of another player does not impact strategic uncertainty, as the actions
of other players in the game are assumed to be perfectly correlated. This extreme
serves as a natural interpretation for a null hypothesis over the number of players,
where the prediction for the N -player game will, ceteris paribus, be the same as for
its two-player counterpart. With these two benchmarks, our experimental treatments
allow us to isolate the effects of strategic uncertainty due to the higher N relative to
the standard two-player game.

Our experimental design provides directional and null predictions for each extension.
To achieve this goal, we introduce a second treatment variable that the prior RPD
literature highlights as a clear driver of behavior: the stage-game payoff gain that a
player gets from a defection, x. For illustration, consider the effect of reducing x. A
lower temptation payoff reduces strategic uncertainty according to both extensions,
predicting higher cooperation. In particular, this second parameter provides for a
directional prediction under the correlated extension. Further, by shifting both N and
x together, we can generate null-effect treatment comparisons under our independent
extension. That is, a predicted increase in strategic uncertainty from higher N can be
perfectly compensated by a reduction in x, generating a stronger test of this extension.
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By manipulating N and x, we create a 2× 2 between-subjects design across our two
basin extensions, generating directional and null predictions for each. This design
enables us to assess which of the two extensions more effectively captures behavior.
Furthermore, it remains a possibility that both extensions lack predictive power,
indicating that coordination in a game involving more than two players may not be
associated with strategic uncertainty.

Our core results indicate that the independent-basin extension best organizes the
longer-run (i.e., ongoing) behavior. Under the independent-belief extension we
observe large behavioral shifts in the predicted direction when varying N in isolation.
When manipulating x and N in opposite directions we observe no significant changes
in behavior, which is in line with the prediction of the independent extension.
However, while the independent extension succeeds in predicting the longer-run
cooperation that may be the most relevant for applications, the measure is not a
good predictor of intentions to cooperate, as captured by initial cooperation.

Our core findings suggest that equilibrium selection is driven by strategic uncertainty
over the behavior of other players. Therefore, eliminating or minimizing doubts about
others’ actions should render the predictions from the basin model irrelevant. We
explore this hypothesis in an additional treatment with pre-play communication.
Here, participants have the opportunity to exchange free-form messages before the
repeated game begins, a feature designed to reduce uncertainty about the strategic
intentions of others (see Kartal and Müller, 2022). In a parameterization where initial
cooperation rates are below one percent in the treatment without communication, the
introduction of pre-play chat shifts behavior to the other extreme, resulting in initial
(ongoing) cooperation rates of 95 (80) percent.

While we observe that predictions based on strategic uncertainty lose validity with
explicit collusion, the model performs well in several robustness treatments with tacit
collusion. We first assess the extent to which selected equilibria are sticky when game
parameters change. Specifically, we introduce a group-size change halfway through
an experimental session, transitioning the same participants from a four-player game
to a two-player game, and vice versa. If the selected equilibrium in the first half is
sticky, then varying N will not affect behavior. As a consequence, the independent-
basin extension, which better organizes results in our between-subjects comparison,
would be irrelevant for comparative statics within a market. However, if strategic
uncertainty changes with new parameters, then an increase (decrease) in N should
decrease (increase) beliefs in others’ cooperation after the parameter change, altering
cooperation. Our findings indicate some stickiness in behavior in the short run, but
we do not observe stickiness in longer-term behavior. Cooperation levels adjust after
a change in N , moving with experience toward the levels observed in the sessions with
fixed N . These results validate the independent-extension measure as a predictor for
equilibrium selection even within a particular context.
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In our second robustness treatment, we relax the condition for group success.
Our previous treatments require joint cooperation from all N players for a group-
wide success. Hence, increasing the number of players from two to four makes it
mechanically harder to achieve success at any fixed rate of individual cooperation (i.e.,
two-from-two is easier than four-from-four). In this robustness treatment, however,
we only require half of the players to cooperate for a group-wide success. Consider
comparing the baseline reference (two-from two) to this robustness (two-from-four)
treatment. The comparison increases N from two to four, but this change does not
make it mechanically harder to achieve success. That is, achieving a success in the
two-from-two game is harder than in the two-from-four case. Despite easing the
conditions for success in the robustness treatment, strategic uncertainty increases,
and the independent-extension predicts lower cooperation. The reason behind this
shift is that coordination in the two-from-four treatment becomes more challenging,
as it introduces the question of which players must cooperate and which can free-ride.
Consistent with the counter-intuitive prediction, our experimental results indicate
that cooperation rates are lower under the two-from-four requirement for an efficient
outcome than the standard RPD where we require two-from-two.

1.1. Literature

This paper is connected to several strands of the literature. Our design is based on
the recent consolidation of the experimental RPD literature presented in Dal Bó and
Fréchette (2018). While one of our baseline treatments replicates a standard finding in
the literature,1 we generalize the equilibrium selection model by adding an additional
source of strategic uncertainty: the number of players, N .2 Where the literature has
developed this model for explanatory purposes, our approach is both to expand the
model to a new setting, but also to test it as the core experimental object.

Our generalization of the strategic uncertainty model is carried out in two ways. The
first extension (and most standard, given its use of independent beliefs) formalizes
a distinct source of strategic uncertainty from the payoff-based source in the meta-
study. An alternative extension (based on fully correlated beliefs) reflects a null effect,
that the newly introduced source has no effect. As such, our generalization offers a
potentially profitable design approach for future research examining other channels for

1. As highlighted by Berry, Coffman, Hanley, Gihleb, and Wilson (2017), experimental replications
can seem less frequent than they are if papers fail to advertise the features that are replications.

2. The basin measure, detailed in Section 2, seeks to capture the intuition from Harsanyi and
Selten (1988)’s risk dominance, and was initially proposed by Blonski and Spagnolo (2001, 2015).
The basin measure was first empirically tested by Dal Bó and Fréchette (2011). See also Fudenberg,
Rand, and Dreber (2012) for an examination of the effects with imperfect monitoring, Kartal and
Müller (2022) for a test of a selection theory based on individual heterogeneity in preferences over
dynamic strategies, and Mermer, Mueller, and Suetens (2021) for two-player games of strategic
complements and substitutes.
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strategic uncertainty effects—asymmetries in the action space or payoffs, the effects
of sequentiality, etc.3

Our environment also allows us to better distinguish between empirical measures
linked to the selection model. That is, using literature-level data assembled by Dal Bó
and Fréchette (2018), we show that the two-player RPD strategic uncertainty model
is suitable to predict both initial and ongoing cooperation.4 However, with more
than two players, this is no longer the case. Here, we demonstrate that the strategic
uncertainty model is better suited to predict ongoing collusion rather than initial
intentions to collude.5

This paper is part of a broader literature that seeks to understand and document
regularities in equilibrium selection, in particular, regularities that are amenable
to theoretical modeling. To this end, our measures of strategic uncertainty are
particularly promising, as the equilibrium objects required for calculation are
computationally simple: the stationary noncollusive equilibrium and the history-
dependent collusive equilibrium. In environments beyond the RPD in which the
equilibrium outcomes are held constant, the model can be similarly extended per our
illustration with a move to N players. However, in more complex environments with
changing sets of equilibria, the constraint to two focal equilibria may lose validity
and/or raise questions as to which two strategies are focal. Examples of more-
complex settings include dynamic games in which the stage environment changes
across supergames, and the space of strategies grows exponentially. Vespa and Wilson
(2020) focus on a horse-race examination of which two equilibria are focal (from a
wider set of possible alternatives) to rationalize behavior in dynamic games. That
paper identifies a similar strategic uncertainty measure constructed around the most-
efficient Markov perfect equilibrium and the best symmetric collusive equilibrium. A
strategic-uncertainty model based on these strategies predicts behavior, where these
strategies dovetail with repeated game strategies in the simpler environment studied
here.6

3. See Ghidoni and Suetens (2022) and Kartal and Müller (2022) for experimental examinations
of the effect of sequentiality in RPD settings through a reduction in strategic uncertainty.

4. With two players, the introduction of sequential moves adds extra variability for identification.
Ghidoni and Suetens (2022) also find that ongoing measures are better predicted than initial rates.

5. Ongoing cooperation is a measure that is likely to be more relevant for empirical applications
where collusion may be a worry. For instance, from Harrington, Gonzalez, and Kujal (2016), page
256: “(...) collusion is more than high prices, it is a mutual understanding among firms to coordinate
their behavior. (...) Firms may periodically raise price in order to attempt to coordinate a move to
a collusive equilibrium, but never succeed in doing so; high average prices are then the product of
failed attempts to collude.”

6. The applications of dynamic games are extensive, thanks to their inherent flexibility. The
ongoing research on equilibrium selection in dynamic games builds upon recent work, among others,
by Battaglini, Nunnari, and Palfrey (2012, 2016); Agranov, Fréchette, Palfrey, and Vespa (2016);
Kloosterman (2019); Vespa and Wilson (2019); Rosokha and Wei (2020); Salz and Vespa (2020);
Vespa (2020).
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An experimental literature on behavior in oligopolies documents that collusion
responds to the number of players. Both Cournot (Huck, Normann, and Oechssler,
2004; Horstmann, Krämer, and Schnurr, 2018) and Bertrand settings (Dufwenberg
and Gneezy, 2000) indicate that as the number of players increases collusion becomes
less likely, often as soon as N exceeds two.7 We contribute to this literature on two
margins. First, we examine how changes to N affect outcomes in an infinite horizon
with collusive and noncollusive equilibria. Second, and crucially, we focus not only on
the qualitative directional effects of N , but also, on validating the model suitability
for studying strategic uncertainty. Specifically, the model, if validated, will help us
understand the extent of substitutability between game primitives, which, in turn, can
prove useful in predicting the directional effects of more-nuanced, multi-dimensional
counterfactuals.

Our work is also related to the experimental literature on mergers that manipulates
the number of players. As surveyed by Goette and Schmutzler (2009), some
experiments deal with “pseudo-mergers,” where a subset of the original firms remains
in the market (see, for example, Huck, Konrad, Müller, and Normann, 2007). Other
experiments implement “real mergers,” where mergers introduce other changes in
the market beyond N (Davis, 2002). Our strategic-uncertainty measure can predict
counterfactual behavior in both settings. Another discussion in this literature is
whether merger effects are evaluated within the same group of participants (within-
subject designs) or across different groups (between-subject designs). In this paper,
we also conduct within-subject sessions at the same parameterization, demonstrating
that although there can be meaningful short-run differences, with enough experience
the results align.8

The effects of communication devices as a support for collusion are well established in
the experimental literature. As surveyed in Cason (2008) and Harrington, Gonzalez,
and Kujal (2016), more-structured, limited forms of communication usually result
in small, temporary collusive gains, where free-form communication generates large,
long-lasting effects.9 For these reasons, we also examine unrestricted chat messages
as a strong coordination device. Our collusive results indicate that the domain for our
strategic-uncertainty measure based on tacit collusion does not include environments
where explicit collusion is allowed. However, we show that there are clear limits on

7. See also references in Potters and Suetens (2013) for similar findings.

8. Differences in behavior tend to be stickier when changes are small or introduced gradually.
Weber (2006) shows that gradually increasing the number of players in a coordination game yields
different results relative to situations where the game begins with a large group. The gradual
introduction of changes to the payoff primitives has also been shown to have effects in repeated
games; see Kartal, Müller, and Tremewan (2021). This suggests that the selection notions under
examination are relevant for “large” counterfactual changes. Future research can help clarify how
to integrate “large” into a predictive model of selection.

9. For further details on the effect of communication in repeated games with an unknown time
horizon, see Fonseca and Normann (2012); Cooper and Kühn (2014); Harrington et al. (2016);
Wilson and Vespa (2020).
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the effects of explicit collusion, and these limits are predictable by theory. Using a
change to the payoff primitives (here the discount rate), we make collusion a knife-
edge, nonrobust equilibrium, and show that the effects of communication dissipate
entirely.

While the experimental literature on repeated games has largely focused on the
standard two-player RPD, there is a large literature studying a canonical N -player
social dilemma: the voluntary contribution public-goods game (see Vesterlund, 2016,
for a survey). Although much of this literature focuses on finite implementations, one
notable exception is Lugovskyy, Puzzello, Sorensen, Walker, and Williams (2017).
Similar to our paper, the authors use experimental variation over both N and the
payoff primitives (in their case, the return to the group contribution). However, this
is done with a different end goal: to identify the isolated effect of the stage game’s
marginal per capita return. Instead, our objective is to isolate strategic uncertainty
and test a predictive theory of selection.10

Beyond social dilemmas, our paper is also related to the literature on coordination
games (see Devetag and Ortmann, 2007, for a survey). The strategic-uncertainty
measure examined in our paper works because the RPD has a stag-hunt normal-form
representation (Blonski and Spagnolo, 2015), adapting the risk-dominance notion for
one-shot coordination games as in Harsanyi and Selten (1988).11 Risk dominance has
been shown to have substantial predictive content in simple coordination games with
tradeoffs over payoff dominance and risk dominance (see Battalio, Samuelson, and
Van Huyck, 2001; Brandts and Cooper, 2006; Dal Bó, Fréchette, and Kim, 2021, and
references therein). Therefore, strategic uncertainty has demonstrated its usefulness
as a theoretical selection device in both static and repeated games. We contribute to
this literature with an experiment that explicitly tests and shows how the predictive
effects extend further to multiplayer infinite-horizon settings.

Finally, our last robustness treatment provides a connection to coordination
games with asymmetric-payoffs equilibria (such as the battle-of-the-sexes game).
Coordination in this treatment requires at least two out of four players to cooperate,
which relaxes the condition for success relative to the two-from-two treatment. But
efficient equilibrium outcomes have two players coordinate on defecting (and getting a
higher payoff) and two players cooperating (and getting a relatively lower payoff). The
asymmetry means that each player would prefer to be a free-rider. Similar tensions

10. Relatedly, Martinez-Martinez and Normann (2024) study an N -player social dilemma in
continuous time and finds that as N increases (and strategic uncertainty increases) cooperation
decreases.

11. The difference in our setting is that neither total payoffs nor strategic choices are directly
provided to the participants, as these are extensive-form objects. Instead, participants are given
the stage-game payoffs and actions, from which strategies (e.g., grim trigger or tit for tat) and
gross payoffs are endogenously derived. Our use of risk dominance in a repeated game refers to the
concept constructed by Spagnolo and Blonski (2001) inspired by Harsanyi and Selten (1988).
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arise in one-shot coordination games with asymmetric payoffs like the battle-of-the-
sexes game, where the literature has documented relatively high coordination failure
rates that result in lower payoffs (cf. Cooper, DeJong, Forsythe, and Ross, 1990, 1993,
1994; Straub, 1995; Crawford, Gneezy, and Rottenstreich, 2008). The low cooperation
rates in our two-from-four robustness treatment suggest that coordination challenges
introduced by asymmetric payoffs already documented in the one-shot battle-of-the-
sexes game can extend to a repeated-game setting like ours.12 try

2. Generalizing the Basin of Attraction

We begin this section by summarizing the progress made towards validating the
basin of attraction for always defect as a theoretical prediction in the two-player
RPD literature. A reader familiar with the literature can skip to Section 2.2, where
we extend the framework by introducing a new parameter for strategic uncertainty,
the number of players N .

2.1. Two-players

Consider an RPD with a discount rate δ ∈ (0, 1). In each period t = 1, 2, . . . players
i ∈ {1, 2} simultaneously select actions ai ∈ A :={(C)ooperate, (D)efect}. The period-
payoff for player i is a function of both players’ choices, πi(ai, aj), where all symmetric
PD stage-games can be expressed in a compact form by normalizing all payoffs relative
to the joint-defection payoff π0 := π(D,D), and rescaling with the relative gain from
joint cooperation: ∆π := π(C,C)−π0.13 Defining scale and normalization in this way,
the PD stage-game can be expressed with two parameters g and s for the different-
action payoffs πi(D,C) = π0 + (1 + g)∆π and πi(C,D) = π0 − s∆π. The parameters
g > 0 and s > 0 capture the relative temptation- and sucker-payoffs, respectively.

The strategic-uncertainty measure we focus on is based on two focal extensive-form
RPD strategies:14

1. always defect, αAll-D, which plays the stage-game Nash in all rounds (the worst-
case subgame-perfect equilibrium of the game).

12. However, as Cooper and Weber (2020) argue, battle-of-the-sexes implementations with
naturally-occurring strategy labels can display higher coordination rates (for instance Holm, 2000).
Since in our setting actions represent abstract choices, we cannot assess the extent to which these
findings extend to repeated games.

13. The game payoffs π can also be transformed as π̃ = (πi−π0)/∆π to express all payoffs relative
to joint defection (π0) in units of the optimization premium (∆π).

14. In Online Appendix G, we explain why focusing on these two strategies is both useful and
minimally restrictive.
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2. Grim trigger, αGrim, which begins by cooperating, but switches to always defect
after any defection in past play (the collusive subgame-perfect equilibrium).15

As functions of the observable history ht, these two strategies are given by:

αGrim(ht) =

{
C if t = 1 or ht = ((C,C), (C,C), . . . , (C,C)),

D otherwise;

αAll-D(ht) = D.

Strategic uncertainty in the two-player RPD is measured through the size of the
basin of attraction for always defect. The model considers the expected reward for
player i when uncertainty on the other player j is represented by a believed strategy
mixture p · αGrim ⊕ (1− p) · αAll-D. The basin for always defect is defined as the set
of beliefs p for which player i receives a higher expected payment from αAll-D than
αGrim. The always-defect belief basin is therefore the interval [0, p?(g, s, δ)] with the
critical-point/interval-width given by:16

p?(g, s, δ) ≡ (1− δ)s
δ − (1− δ) (g − s)

(1)

Consequently, the PD stage-game payoffs are used as primitive inputs into a
risk/reward model of collusion based upon strategic uncertainty.

Equation (1) represents a theoretical relationship between the payoff primitives of
the game and a critical strategic belief over the other player’s likelihood of collusion.
The hypothesized relationship is monotone, which allows unambiguous directional
predictions for any counterfactual change in the primitives. Moreover, the cardinal
basin-size measure directly implies the ordinal risk-dominance relationship between
the two strategies. If p?(g, s, δ) < 1/2 the collusive strategy αGrim risk dominates
αAll-D, and vice versa.

Using results from the meta-study on the two-player RPD (Dal Bó and Fréchette,
2018), we illustrate the relationships between the scalar basin-size measure of strategic
uncertainty and our two focal outcome measures: initial and ongoing cooperation
rates. In both panels of Figure 1, the horizontal axis represents the theoretical measure
of strategic uncertainty, while the vertical axes represent one of our outcome measures.
In Panel (A) we present the results for initial cooperation; in Panel (B) we present
results for ongoing cooperation. The solid line in both panels indicates ĈMeta (p?),

15. The strategy here is ‘best case’ as: (i) It can support the best-case outcome. (ii) It uses the
harshest possible punishment and can support collusion at smaller values of δ than any other
strategy. (iii) Any realized miscoordination is minimal and resolves in a single round.

16. In the case that the strategy (αGrim, αGrim) is not a subgame-perfect equilibrium of the
repeated game, the basin size for always defect is defined as p?(g, s, δ) = 1.
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(b) Ongoing cooperation

Figure 1. Meta-study relationship: strategic uncertainty and RPD cooperation—black line
shows estimated relationship from (Dal Bó and Fréchette, 2018) meta-study (95 percent
confidence in gray), with each point representing a separate treatment.

which we use to denote the predicted cooperation rate using meta-study data at each
p?.17 The shaded region represents the 95 percent confidence interval for ĈMeta (p?).

For both initial and ongoing cooperation, we find essentially the same predicted
relationship ĈMeta (p?), consistently low levels of cooperation when always-defect is
risk dominant (p? > 1/2); and a significantly decreasing relationship with p? when
collusion is risk dominant (p? < 1/2).

The theoretical model used in the basin construction posits a connection between
initial and ongoing cooperation. If collusion functions through conditional cooperation
with grim-trigger punishments, the expected ongoing cooperation rate is the
probability that the players jointly cooperate in the first round: the initial cooperation
rate squared. Thus, if cooperation were effectively governed by grim triggers, both
measures of empirical cooperation would carry the same information. Since, in fact,
grim-trigger punishments have been documented to be used by subjects (for example,
Dal Bó and Fréchette, 2011), data from RPD games do not provide enough variation
to identify whether theoretical notions track more closely with either empirical

17. We estimate a probit regression using meta-study data from 996 participants clustered across
18 experimental treatments, where we focus on late-session cooperation (supergames 16-20). The
individual-level cooperation decisions serve as the left-hand side variable, and the basin size is
included on the right-hand side in a piecewise-linear fashion around the risk-dominance dividing
point. Our econometric specification is inspired by Dal Bó and Fréchette (2018, Table 4). However,
to maintain a continuous relationship, we modify their specification by eliminating a degree of
freedom that allowed for a discontinuity at p? = 1/2.
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measure. Consequently, with only two players it is challenging to identify the extent
to which the strategic-uncertainty measure predicts initial intentions versus successful
coordination.18 However, as we will show below, adding more players provides
additional variation that will allow us to differentiate between the two measures of
cooperation.19

2.2. Extending to N > 2

We now extend the strategic-uncertainty model to an N -player environment. To
achieve this, we consider a family of symmetric social dilemmas that nest the standard
two-player RPD. To maintain a constant 2× 2 stage-game representation for all N ,
our family of dilemmas makes use of an aggregate signal of the other agents’ actions.
All players i = 1, . . . ,N continue to make a binary action choice ai ∈ A ≡ {C,D},
but their payoffs do not vary with (and they do not receive feedback on) the separate
actions of the other N − 1 players. Instead, players’ payoffs are determined by their
own-action ai and a deterministic binary signal σ(a−i) ∈ {S(uccess), F (ailure)} of the
others’ actions, a−i. In particular, the generic player i’s stage-game payoff and signal
function are given, respectively, by:

πi

(
ai, σ

)
=


π0 + ∆π if ai = C,σ = S,

π0 + ∆π (1 + x) if ai = D,σ = S,

π0 −∆πx if ai = C,σ = F,

π0 if ai = D,σ = F ;

(2)

σ(a−i) =

{
S if aj = C for all j 6= i,

F otherwise.
(3)

These choices lead to a symmetric game, in which payoffs can be summarized with a
2× 2 table over: (i) The own action C or D; and (ii) The signal outcome, an S signal
if the other N − 1 players jointly cooperate, or an F signal if at least one other player
defects.20

Ignoring the scale and normalization of the game (held constant in our experiments
with ∆π = $9 and π0 = $11), the repeated games we examine are summarized by

18. For a setting that achieves this with sequentiality of moves, see Ghidoni and Suetens (2022).

19. In settings where collusion requires N agents to initially cooperate to produce ongoing
cooperation, the relationship is given by initial cooperation rate to the N -th power. Separate
identification between the two measures is possible by comparing treatments with different values
of N .

20. In Section 5, we present a treatment where cooperative outcomes require only two out of
four players to cooperate. Introducing the possibility of achieving cooperative outcomes with some
players not cooperating gives rise to a free-riding problem. However, in our main treatments, we
sidestep this issue by assuming efficient ongoing cooperative outcomes only when all N players
cooperate.
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three primitives: (i) The relative cost of cooperating, x;21 (ii) The number of players,
N ; and (iii) The continuation probability, δ. Our experiments fix δ = 3/4 in all but
one diagnostic treatment in Section 5. This leaves us with two key experimental
parameters: the relative cost of cooperating x and the number of participants N .

In building a model of strategic uncertainty for arbitrary N , we use a symmetric belief
over the others’ choices. That is, we assume each player chooses a mixture over αGrim

and αAll-D.22 Our family of social dilemmas requires cooperation from all N players
for everyone to get an S signal. Thus, strategic uncertainty reduces to the probability
that the other N − 1 players jointly coordinate on the collusive strategy,

Q (N) = Pr {N − 1 others all choose αGrim} .

In every other case, at least N − 1 players will receive an F signal and the punishment
path will be triggered.

As in the case of two players, the critical belief Q?(N) is given by the point of
indifference between the amount given up with certainty from a single round of
cooperation, x∆π, and the continuation gain from collusion, [δ/(1− δ)] ·∆π, obtained
with probability:

Q? (N) =
(1− δ)
δ

x,

where the right-hand-side is identical to the two-player construction in Equation (1)
for x = g = s.

Next, we need to relate the joint cooperation of the other N − 1 players to the
probability p that each individual other player attempts to collude. Our design focuses
on two extremes. The “standard” extension in which beliefs are fully independent;
and an alternative/null-effect model in which beliefs are perfectly correlated.23

Assuming perfect correlation for the other N − 1 agents, Q (N) = p, so the critical
belief is:

p?Corr.(x) =
1− δ
δ

x. (4)

21. In the meta-study notation this is implemented with s = g = x. This single-parameter
formulation is equivalent to the Fudenberg, Rand, and Dreber (2012) benefit/cost formulation,
where their benefit/cost ratio parameter (b/c) is given by (1 + x)/x here.

22. For the N -player dilemma we define the grim-trigger strategy with imperfect signals as:

αGrim(ht) =

{
C if t = 1 or ht = ((C,S), (C,S), . . . , (C,S)),

D otherwise.

23. See Cason, Sharma, and Vadovič (2020) for an example of correlated beliefs that emerge in
situations where independence would be the standard prediction.
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In contrast, when beliefs are fully independent, Q (N) = pN−1, so the critical belief
is:

p?Ind.(x,N) =

(
1− δ
δ

x

)1/N−1

≡ (p?Corr.(x))
1/N−1 . (5)

Note that the correlated measure in Equation (4) is not a function of N , while the
independent measure in Equation (5) increases in N . The two measures are identical
only in the RPD case at N = 2.24

We focus on these two extreme cases of full independence and perfect correlation
because: (i) They allow us to produce an experimental design that has stark behavioral
predictions; and (ii) Both measures are simple to compute in settings beyond our
environment.25

3. Experimental Design

Based on the basin measures derived in Equations (4) and (5), our experimental
design is founded on two competing hypotheses:

Correlated-Basin/Null-effect Hypothesis. Cooperation decreases as we
increase the cost of cooperation x, but there is no effect as we vary the number of
players N .

Independent-Basin Hypothesis. Cooperation decreases as we increase x and/or
N . Moreover, the substitution effects between x and N indicate no effect on
cooperation if we decrease x and increase N to hold constant p?Ind..

In Panel (A) of Table 1 we illustrate our first treatment dimension, which manipulates
the payoff cost of cooperating X = x∆π, where ∆π = $9. The two values of X—a
high temptation of $9 (a normalized temptation of x = 1) illustrated on the left,

24. Notice that both extensions of the measure capture beliefs over supergame strategies (full
specifications of what action to play at any history). For the two strategies underlying the basin
measures, actions are perfectly correlated in all rounds after the first one. For instance, consider
αGrim. Either all N players successfully coordinate on cooperation, or after an observed failure in
round one, the punishment path is triggered with all N players choosing defect in all subsequent
rounds. As such, the independent and correlated models will only differ in the potential for
correlation in the very first round.

25. One can define an intermediate hypothesis with an extra parameter that captures the extent
to which beliefs are independent (with complementary probability on the extent to which beliefs are
correlated). In Section 4 we discuss this alternative in further detail and estimate the correlation
parameter from the data.
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Table 1. Experimental design

Panel A.
Stage-game

payoffs
X = $9 X = $1

σ(a−i) = S σ(a−i) = F σ(a−i) = S σ(a−i) = F

Cooperate, πi(C,σ) $20 $2 $20 $10
Defect, πi(D,σ) $29 $11 $21 $11

Panel B.
All-D Basin

Size
X = $9 (x = 1) X = $1 (x = 1/9)

N = 2 N = 4 N = 4 N = 10

Correlated, p?Cor.(x) p?0 p?0 p?0 −∆p?Cor. p?0 −∆p?Cor.

[0.33] [0.33] [0.04] [0.04]
Independent, p?Ind.(x,N) p?0 p?0 + ∆p?Ind. p?0 p?0 + ∆p?Ind.

[0.33] [0.69] [0.33] [0.69]
Sessions 3 3 3 2
Subjects 60 60 72 60

Panel C.
Meta-study
prediction

p?0 Marginal effect from basin:

[0.33] Increase to [0.69] Decrease to [0.04]

Initial coop., t = 1 0.50 −0.26 +0.35
Ongoing coop., t > 1 0.37 −0.21 +0.35

Meta-study predictions in Panel (C) correspond to the estimated relationship ĈMeta (p?) illustrated
in Figure 1 .

and a low temptation of $1 (a normalized temptation of x = 1/9) illustrated on the
right—lead to two payoff environments over own actions and signals.26,27

We also vary the number of players N as indicated in the column headings of Panel
(B) in Table 1. The two rows of Panel (B) illustrate how choices regarding X and
N influence the basin-size measures of strategic uncertainty under the correlated
and independent extensions. In total, we create four treatments, each defined by an
(N,X)-pair.

To independently manipulate each basin-size measure, we select (N=2;X=$9) as
our baseline treatment. When comparing (N=2;X=$9) with (N=4;X=$9) we keep
the correlated-basin measure constant at p?0 = 0.33 and increase the independent-
basin measure to p?0 + ∆p?Ind. = 0.69. Next, when comparing (N=2;X=$9) with
(N=4;X=$1) we keep the independent-basin measure constant at p?0 = 0.33 and
lower the correlated-basin measure to p?0 −∆p?Corr. = 0.04. Finally, when comparing
(N=4;X=$1) with (N=10;X=$1) we keep the correlated-basin measure constant at
p?0 −∆p?Corr. = 0.04 and increase the independent-basin measure to p?0 + ∆p?Ind. =
0.69.

26. See Figure E.1 in Online Appendix E for representative lab screenshots.

27. Henceforth, we will focus on the payoff cost of cooperating X rather than the normalized
parameter x.
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By varying the primitives X and N , our 2 × 2 design yields four pairs of
correlated/independent basin measures:28

(p?Corr., p
?
Ind.) ∈

{
p?0, p

?
0 −∆p?Corr.

}
×

{
p?0, p

?
0 + ∆p?Ind.

}
:=
{

0.33, 0.04
}
×

{
0.33, 0.69

}
.

Using the probit-model estimates illustrated in Figure 1 we can provide a quantitative
prediction ĈMeta (p?) for the cooperation rate under each basin-size measure p?. These
predictions are outlined in Panel (C) of Table 1. The first column presents the initial
and ongoing cooperation rates expected at p? = 0.33. The next two columns indicate
the expected treatment effect resulting from a shift in strategic uncertainty from
p? = 0.33 to either p?0 −∆p?Corr. = 0.04 or p?0 + ∆p?Ind. = 0.69.

For illustration, consider the predictions under the standard independence-based
extension. In the (N=2;X=$9) and (N=4;X=$1) treatments, the independent basin
size is 0.33, and it increases to 0.69 in (N=4;X=$9) and (N=10;X=$1). If the strategic
uncertainty relationship estimated from the two-player RPD meta-data were perfectly
extrapolated to our setting, we should expect: (i) A reduction of 26 (21) percentage
points in initial (ongoing) cooperation across the treatment pairs, caused by an
increase in strategic uncertainty. (ii) A null effect on cooperation within each
treatment pair, reflecting the designed perfect substitution across X and N in the
independence-based measure.29

Note that our hypotheses do not specify whether initial cooperation, ongoing
cooperation, or both are expected to align with the behavior of many players. Initial
cooperation captures intentions to coordinate (with beliefs as a driver), while ongoing
cooperation reflects successful coordination (with the interaction of the beliefs as a
driver). In the case of the two-player RPD, Figure 1 shows that the basin size closely
follows both cooperation measures, making it challenging to disentangle the effects. By
introducing variation in N , we add a channel that might help us distinguish between
initial and ongoing cooperation, and identify which measure is better predicted by
basin-size models.

28. We chose ∆π = $9 and δ = 3/4 for simplicity of presentation to participants (i.e., integer
values for both N and X). The precise design over the basin measures is as follows:

(p?Corr., p
?
Ind.) ∈

{
3−1, 3−3

}
×

{
3−1, 3−1/3

}
.

29. Alternatively, under a null-effect from N , given by the correlated-basin measure, the basin
size is reduced from 0.33 to 0.04 as we move between the (N=2;X=$9) and (N=4;X=$9) treatment
pair and the (N=4;X=$1) and (N=10;X=$1) pair. Based on the estimated relationship from the
meta-study, this implies an increase in the initial cooperation rate of 35 percentage points and an
increase in the ongoing cooperation rate of 50 percentage points, and null effects within each pair
for fixed X.
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Experimental Specifics

In our main experiments, we used a between-subject design over the four treatments
outlined in Table 1. Participants for each treatment were recruited from the
undergraduate population at the University of Pittsburgh, and each took part in
exactly one session. We recruited a total of 584 participants, 252 for the first four
main treatments, and 332 for the extensions discussed in Section 5. Each treatment
comprised three sessions, aiming to enroll a minimum of 20 participants per session,
except for the (N=10;X=$1) treatment, for which we conducted two sessions with
30 participants each.30 Sessions lasted between 55 and 90 minutes, and participants
received an average payment of approximately $19.

Each session comprised 20 supergames, with a common random termination chance
of 1 − δ = 1/4 after each completed round.31 The participants were randomly and
anonymously matched in the 20 supergames in a stranger design.32 The 20 supergames
were divided into two parts of ten supergames.33 For final payment, one supergame
from each part was randomly selected, where only the actions/signals from the last
round in the selected supergame counted for payment.34

4. Results

We begin this section by describing the aggregate cooperation and success rates at
the treatment level. Then, we proceed to discussing inferential tests of our two basin-
extension hypotheses.

30. While our design called for sessions to have at least 20 participants, we allowed sessions to
grow by an additional group of size N depending on realized show ups. For (N=10;X=$1) we instead
opted to recruit 30 participants for each session so that we had three groups in each supergame.

31. We employed common draws to maintain consistent supergame lengths at the session level for
each treatment.

32. All participants received both written and verbal instructions regarding the task and payoffs.
Detailed instructions are available for interested readers in the Online Appendix F.

33. Participants were provided with complete instructions for the first part and were informed
that instructions for the second part would be given after completing supergame ten. For the four
between-subject treatments outlined in Section 3, part two was identical to part one. In later
sections of the paper, we describe an additional set of treatments with a within-subject change
across the two parts. The decision to have two identical parts here enables direct comparisons in
first-half play.

34. This method, developed in Sherstyuk, Tarui, and Saijo (2013), is employed to induce risk
neutrality across supergame lengths. Another advantage of this design choice is the absence of
wealth effects within a supergame, where history serves only as an instrument for the future play
of others.
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Table 2. Cooperation and success rates across all supergames

Action and
signal rates

X = $9 X = $1

N = 2 N = 4 N = 4 N = 10

Cooperation

Initial 0.503
(0.058)

0.035
(0.017)

0.792
(0.042)

0.357
(0.055)

〈0.50〉 〈0.24〉 〈0.50〉 〈0.24〉
|0.50| |0.50| |0.84| |0.84|

Ongoing 0.450
(0.055)

0.006
(0.003)

0.409
(0.050)

0.185
(0.048)

〈0.37〉 〈0.16〉 〈0.37〉 〈0.16〉
|0.37| |0.37| |0.72| |0.72|

Success

Initial 0.503 0.000 0.578 0.000
Ongoing 0.450 0.000 0.293 0.000

Results are calculated using data from the last-five supergames. Cooperation rates present raw
proportions, with subject-clustered standard errors in parentheses. For comparison, we provide the meta-
study prediction for the independent basin measure ĈMeta

(
p?Ind.

)
in angle-brackets, 〈·〉, and the prediction

ĈMeta

(
p?Cor.

)
for the correlated basin measure in vertical bars, |·| (cf. Panel (B) of Table 1 for details).

4.1. Main Treatment Differences

In Table 2 we present average cooperation and success rates by treatment, for both
initial and ongoing cooperation. Averages are computed for the last five supergames
to capture late-session behavior, where subjects have accumulated experience in the
environment.35 Overall, the results reveal large shifts in cooperation as we manipulate
the cost of cooperation X and/or the number of players N .

The first row in Table 2 provides a summary of initial cooperation. The 50.3 percent
initial cooperation rate in our (N=2;X=$9) treatment closely aligns with the 50.0
percent rate predicted by the meta-study. However, maintaining the cooperation
cost at X = $9 and doubling the group size to four virtually eliminates cooperative
behavior, resulting in an initial cooperation rate of 3.5 percent in (N=4;X=$9). In
the first round of our low-temptation scenarios (X = $1), groups of N = 4 exhibit
highly cooperative behavior (79.2 percent) while groups of N = 10 display moderate
cooperation (35.7 percent).

The next two rows in Table 2 summarize the ongoing cooperation rates. Across
all treatments we observe a decrease in ongoing cooperation compared to initial
cooperation. The most substantial quantitative drops are evident in the X = 1

35. Including all rounds yields similar results (see Table A.1 in Online Appendix A).
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treatments, where ongoing cooperation rates are halved in comparison to the initial
cooperation rates.36

The last two rows in Table 2 present the fraction of rounds in which a success signal
was observed.37 The patterns that emerge for success rates are similar to those seen
for ongoing cooperation, though with starker quantitative effects. Although success is
the modal signal in the (N=2;X=$9) and (N=4;X=$1) treatments, in the (N=4;X=$9)
and (N=10;X=$1) treatments there are no successes at all.38

The results presented in Table 2 speak to both the correlated- and independent-basin
hypotheses. The collected evidence does not favor the correlated-basin hypothesis. For
both the initial and ongoing cooperation rates we observe large changes in behavior
as we move N for either fixed value of X. On the other hand, the data support the
independent-basin predictions regarding directional shifts in both initial and ongoing
cooperation rates as we vary X or N in isolation. However, for initial cooperation,
we observe deviations from perfect substitution of strategic uncertainty as X and N
move in opposing directions. The independent-basin hypothesis predicts a null effect
when we compare either (N=2;X=$9) to (N=4;X=$1) or (N=4;X=$9) to (N=10;X=$1).
But instead we observe substantial effects in the comparisons of initial cooperation,
with 29 and 35 percentage point differences, respectively.

Meanwhile, ongoing cooperation in the (N=2;X=$9) and (N=4;X=$1) treatments are
relatively close, at 45.0 and 40.0 percent, respectively. This finding aligns qualitatively
with the independent-basin prediction of no difference due to perfect substitution of
strategic uncertainty. For a similar comparison, however, we still note an 18 percentage
point difference between (N=4;X=$9) and (N=10;X=$1). The difference is driven by
a very stark finding of near-zero cooperation in (N=4;X=$9). As we outline further
below this is the main deviation in our data relative to the meta-study prediction.39

36. In Online Appendix A, Table A.2 provides a more detailed breakdown of ongoing cooperation
rates based on the observed history from the previous round. The findings suggest that individual
cooperation is heavily conditioned on successful coordination in the preceding round. Interestingly,
participants are markedly more forgiving after failed cooperation at X = $1 than X = $9.

37. A success at the individual level requires joint cooperation from the other N − 1 participants.
Success is directly linked to group-level cooperation, where the expected success rate, given an
independent cooperation rate p, is pN−1. In two-player games, the success rate is identical to the
cooperation rate. Expected success rates (given the cooperation rate and independent matching)
in the initial round are, in the order of Table 2 columns: 0.503, 4.2× 10−5, 0.497 and 9.3× 10−5.

38. As success directly aggregates individual-level cooperation, we refrain from reporting standard
errors (where standard errors also cannot be calculated in cases where we have no variation).
Nevertheless, the pronounced nature of the effect, in alignment with predictions for the independent-
basin hypothesis, clearly illustrates the underlying economic relationship.

39. Regarding inference, Online Appendix A presents two additional tests: (i) Tests examining
the cardinal predictions from the meta-study, and (ii) Tests assessing the ordinal predictions across
treatments. In the first set of tests (Table A.3), we evaluate the predicted cooperation levels

ĈMeta (p?) from the meta study. Our findings reveal the rejection of cardinal predictions for both
initial and ongoing cooperation, irrespective of whether the basins are independent or correlated
(p < 0.001 all F -tests). However, closer examination indicates that the meta-study aligns more
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Table 3. Basin-effect decomposition: Main treatments

Experimental
results

p?0
Marginal effect in cooperation from:

Independent basin increase to Correlated basin decrease to

[0.33] p?0 + ∆p?Ind. = [0.69] p?0 − ∆p?Corr. = [0.04]

Initial 0.464
(0.051)

−0.395
(0.048)

+0.357
(0.053)

〈0.50〉 〈−0.26〉 〈+0.35〉
Ongoing 0.366

(0.051)
−0.293
(0.051)

+0.115
(0.061)

〈0.37〉 〈−0.21〉 〈+0.35〉

Results are calculated using data from the last-five supergames. The cooperation decomposition runs
two probits, one for initial, and one for the ongoing cooperation, with subject-clustered standard errors
in parentheses. Right-hand-side variables are a constant and two dummies, one for a low-correlated–basin
treatment (X = $1, both N values), one for a high-independent–basin treatment (X = $9/N = 4 and
X = $1/N = 10). Meta-study predictions given in angle brackets, 〈·〉, below each result.

4.2. Evaluation of the Independent- and Correlated-Basin Hypotheses

Table 3 presents a direct statistical evaluation of our two competing hypotheses. The
results are based on probit regressions that examine subjects’ cooperation decisions,
with dummy variables corresponding to the 2×2 design outlined in Table 1 Panel (B).
The dummy covariates include an indicator for the predicted ∆p?Cor. decrease from
the correlated basin (as we decrease X for any N) and an indicator for the predicted
∆p?Ind. increase from the independent basin (as we increase N holding X constant).

Each row in Table 3 presents results from a distinct estimation, one focusing on initial
cooperation and the other on ongoing cooperation. The first p?0 column displays the
estimated cooperation rate when both dummy variables are zero, representing the
RPD cooperation rate with a basin size of p?0 = 0.33. The following two columns
illustrate the estimated marginal effect on the cooperation rate for a shift in each
basin measure, while holding the other basin constant. If either of the two basin
hypotheses fully explained behavior, we would expect a significant estimate for the
dummy on that basin shift and an insignificant effect on the other.

closely with predicted behavior in two specific scenarios: (i) ongoing cooperation, and (ii) predictions
using the independent basin. For ongoing cooperation under the independent-basin prediction,
we do not reject the predicted cooperation levels in (N=2;X=$9), (N=2;X=$1) and (N=10;X=$1)
(p > 0.150 all comparisons, jointly p = 0.447). The only exception is the (N=4;X=$9) treatment
(p < 0.001), where the meta-study predicts a cooperation rate of 16 percent, but the observed rate
is virtually zero.

For the ordinal comparisons, Table A.4 presents the six possible treatment comparisons in our
design, along with the ordinal prediction from each basin notion. For ongoing (initial) cooperation,
the independent basin correctly organizes five (four) of the six comparisons. While it orders the
four treatments where a difference is predicted (for both ongoing and initial cooperation), the
independent basin fails one of the two null tests for ongoing cooperation and both null tests for
initial cooperation. Meanwhile, the correlated basin makes three successful predictions out of six,
one incorrect directional prediction, and fails both null tests.
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Boczoń, Vespa, Weidman & Wilson Testing Strategic Uncertainty 20

0 0.25 0.5 0.75 1

0

0.5

1

p
? 0

p
? 0

+
∆

p
? In

d
.

R
is

k
d
o
m

in
a
n
c
e

(
N=2
X=$9

)

(
N=4
X=$1

)

(
N=10
X=$1

)

(
N=4
X=$9

)

Size of always-defect basin, p?

In
it

ia
l

c
o
o
p

e
ra

ti
o
n

ra
te

(t
=

1
)

(a) Initial cooperation

0 0.25 0.5 0.75 1

0

0.5

1

p
? 0

p
? 0

+
∆

p
? In

d
.

R
is

k
d
o
m

in
a
n
c
e

(
N=2
X=$9

)
(
N=4
X=$1

)

(
N=10
X=$1

)

(
N=4
X=$9

)

Size of always-defect basin, p?

O
n
g
o
in

g
c
o
o
p

e
ra

ti
o
n

ra
te

(t
>

1
)

(b) Ongoing cooperation

Figure 2. Cooperation under the independent basin-size model—filled circles indicate treatment
averages; filled diamonds pooled average over each independent-basin value; empty circle indicates
unilateral cooperation rates from extension treatment discussed in Section 5.

The estimation parallels the probit model we run to recover the meta-study prediction
ĈMeta (p?). The estimated baseline cooperation rates is for an RPD with p?0 = 0.33,
where this baseline closely matches the meta-study prediction. Specifically, while the
meta-study predicts the initial (ongoing) cooperation rate of 50.0 (37.0) percent,
our data at p?0 = 0.33 reflects a very similar (and statistically indistinguishable)
rate of 46.4 (36.6) percent. To illustrate this alignment, Figure 2 depicts the fitted
relationships from the meta-study overlaid with our results from the four treatments
using the independent-basin size on the horizontal axis. Filled circles represent
individual treatments and filled diamonds treatments pooled over each value for the
independent-basin measure. While there is notable divergence for initial cooperation,
Figure 2 demonstrates quantitatively similar results for ongoing cooperation.40

To test our two competing hypotheses, we focus on the second and third columns
of Table 3. In the scenario where the independent-basin measure comprehensively
captured all pertinent aspects of behavior, we would expect a statistically significant
and negative estimate in the second column, coupled with a zero effect in the third
column. Meanwhile, if the correlated-basin captured behavior, we would expect a
significantly negative effect in the third column and a zero effect in the second column.

40. In Online Appendix A, Figure A.1 presents analogous results organized under the correlated-
basin model. The figure illustrates much poorer organization of the data, both in terms of relative
treatment comparisons and quantitatively.
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In terms of initial cooperation, our results reveal that modifications to both basin
measures yield significant effects (p < 0.001). Although the estimated effects are
comparable in magnitude, they exhibit opposite directions, which is consistent with
our predictions. Given that neither effect prevails over the other, we infer that both
X and N contribute unique information to the prediction of initial cooperation, and
this information is not entirely captured by either basin measure independently.

Regarding ongoing cooperation, the increase from the independent basin shift is
negative and significant (p < 0.001) and it is quantitatively close to the meta-study
prediction. Meanwhile the estimated effect for the correlated basin is much smaller
in magnitude and significant only at the 10 percent level (p = 0.061) after controlling
for the independent basin. The small effect attributed to the correlated basin in
our estimation could also be associated with other-regarding preferences. Part of the
differences in cooperation are driven by a higher fraction of unconditional cooperators
at X = $1 compared to X = $9.41 Because variation in X is associated with shifts in
the correlated-basin value (invariant to N), this presents a difficulty in interpretation
for the small positive effects for the correlated basin. While this could be driven by
belief correlation, it could also be driven by other-regarding preferences.42

In addition to the qualitative directional effects, we observe that the quantitative
shifts in ongoing cooperation under the independent-basin measure closely align with
the predicted effects expected from the meta-study.43 Specifically, the latter predicts
a drop of 21 percentage points (last row in Table 3) in ongoing cooperation when
the size of the basin increases from p?0 = 0.33 to 0.69, and our estimates indicate a
decrease of 29 percentage points.44

41. In Tables G.1 and G.2 of Online Appendix G we present strategy frequency estimates from
the first and last seven supergames, where we identify the fraction of choices that are consistent
with unconditional cooperation in each treatment.

42. By design, subjects receive coarse feedback in our environment. For example, a failure signal
in a treatment with N = 4 indicates that at least one of the other three members did not cooperate.
Such coarse feedback minimizes the possibility that early feedback is exacerbated as N increases.
If we had provided subjects with disaggregated feedback, a treatment with N = 10 would provide
effective feedback on everyone else in the session after a few supergames. This could translate into
early choices having more of an impact in later choices in treatments with high N . While this type
of effect is muted given our coarse feedback, it is still possible for it to arise. We do not see any clear
evidence in this direction, but a definitive test would require treatments with a turnpike, perfect
stranger designs, and/or larger sessions.

43. Our measures of equilibrium selection aim to capture strategic uncertainty in a setting that
differs from the two-player RPD. Discovering that our results align with findings in the two-player
RPD literature is valuable. It implies that a measure of strategic uncertainty might be a robust
predictor of collusion, irrespective of the specific details of the environment.

44. On the contrary, the meta-study predicts an increase of 50 percentage points in initial
cooperation when the size of the correlated basin decreases from p?0 = 0.33 to 0.04, and our estimates
indicate an increase of roughly 11.5 percentage points, after controlling for the independent-basin
effects.
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The main difference in ongoing cooperation between our data and the independent-
basin predictions from the meta-study arises from extreme behavior in the (N=4;X=$9)
treatment, where cooperation is essentially at the boundary. A two-player RPD with
a basin size of p? = 0.69 has a predicted ongoing cooperation rate of 16.0 percent,
and this prediction remains relatively stable for all other values of the basin where
grim is risk-dominated (with 11.0 percent cooperation predicted at p? = 1). The very
low late-session cooperation rates in (N=4;X=$9) can be explained by considering
the large payoff reduction from cooperation, coupled with unrelentingly negative
feedback. That is, out of 1,145 supergame-rounds in this treatment where a group
of four attempted to coordinate, only a single group was successful for a single
round. However, though the observed level deviates from the prediction, a broader
interpretation of the basin continues to hold: conditional cooperation is not expected
when always-defect is risk dominant (p? > 1/2), while the level of cooperation is
predictably decreasing when grim is risk dominant (p < 1/2).

Finally, we attempt to measure how much correlation is necessary to rationalize the
data. To achieve this, we allow beliefs to be a convex combination of the independent
and correlated models. With proportion σ, the N − 1 agents collectively choose grim
with probability p and always defect with probability 1− p; with proportion 1− σ,
each agent independently chooses grim with probability p and always defect with
probability 1− p. Under this specification, the probability that the otherN − 1 players
coordinate is given by

σ · p+ (1− σ) · pN−1,

with the critical belief denoted by p?(σ, x,N). The additional parameter σ nests the
two extremes: σ = 0 for full independence, σ = 1 for perfect correlation.45

Looking at the best fitting parameter, for (I)nitial cooperation, we estimate σ̂I =
0.091 (with standard error of 0.005), while the comparable estimate for (O)ngoing
cooperation is σ̂O = 0.031 (with the standard error of 0.014). Both estimates are
statistically different from zero (p < 0.001 and p = 0.014 for initial and ongoing,
respectively). The conclusion from the exercise is that the estimated degree of
correlation needed is quantitatively small.

We now summarize our main results:

Result 1 (Independent-Basin Measure). The independent-basin measure qualita-
tively organizes the results for ongoing cooperation and matches the quantitative level
predictions in all treatments except for one. However, it does not contain all relevant
information to predict initial intentions to cooperate.

45. Full details of the estimation procedure are provided in Online Appendix D.
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Result 2 (Correlated-Basin Measure). Our data are inconsistent with the
predictions from the correlated-basin hypothesis, for both initial and ongoing
cooperation. In particular, where the correlated basin predicts that behavior should,
ceteris paribus, be unaffected by N , we find decreases in cooperation as N increases.
Quantitatively, the estimated degree of belief correlation required to rationalize the
results is small.

5. Beyond the main results

Our analysis thus far has abstracted away other features of the coordination problem
to focus on the pure effects of the stage-game primitives. In this section, we introduce
additional treatments to study possible limitations of the strategic-uncertainty model
in predicting changes in equilibrium selection.

5.1. Between vs. Within Identification

Here, we explore the extent to which behavior after a policy change might not align
with corresponding changes to the basin. Consider a policy change that alters the
underlying strategic environment—the temptation and/or the number of players for
our experiments—and therefore the collusive prediction. The underlying idea from
the model is that beliefs about others’ strategies drive behavior. But if beliefs are
shaped by experiences formed prior to the policy change, a strategic uncertainty
model might fail to predict behavioral changes within population. In the previous
section, our treatments employed a between-subjects design, where identification
relied on comparisons of late-session behavior between different populations, each
with experience in a fixed strategic setting. In our modified treatments, we investigate
the effects on collusive behavior following a change in the number of players N within
the same session.

We examine two within-session treatment shifts: one with (N=2;X=$9) in the first
half of the session, and (N=4;X=$9) in the second half; and the reverse treatment
shift with (N=4;X=$9) in the first half, and (N=2;X=$9) in the second. Given that we
keep the temptation parameter constant at X = $9, we label these two treatments
as 2 → 4 and 4 → 2, respectively. In both treatments, the change in N comes as a
surprise: subjects are aware of a second part, but they do not receive instructions for
the second part until the end of supergame ten. In terms of the independent-basin
model, this creates a shift across the session from a low basin size of 0.33 when N = 2
to a high basin size of 0.69 when N = 4. In particular, this is a shift in N that
generates a substantial treatment effect for the between-subject treatments.

In Figure 3(A) we present the initial cooperation rates by supergame and type of
treatment. The between-subject treatments with N = 2 and N = 4 are indicated by
gray dashed lines, while the within-subject treatments are represented by two colored
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lines: a solid red line for the 2 → 4 treatment and a dash-dotted blue line for the
4→ 2 treatment.

The figure illustrates a substantial between-subject effect, with more cooperation
in N = 2 than N = 4 across all twenty supergames. Pooling the between and within
treatments in supergames 6–10, we arrive at an initial cooperation rate of 47.4 percent
for N = 2 and 13.9 percent for N = 4.46 As we move into supergames 11–20 for
our within-subject treatments, the strategic environment changes, specifically, the
number of players an individual is matched with either decreases or increases. For the
2→ 4 treatment (the solid red line), initial cooperation remains high as N increases.
While there is no immediate drop in cooperation, we observe that as participants gain
experience at N = 4, the cooperation rate continues to fall, reaching 16.7 percent by
supergame 20. In contrast, moving from N = 4 to N = 2 (the blue dash-dotted
line), we observe an immediate jump in cooperation as N decreases: the initial-round
cooperation in the last supergame with N = 4 is 18.3 percent, but after the reduction
to N = 2 the cooperation rate immediately jumps up to 60.0 percent. This jump in
cooperation as N decreases is then sustained across the remaining supergames, with
58.3 percent cooperation by supergame 20.

Inspecting the results illustrated in Figure 3(A) it is clear that there is minimal
evidence for the hypothesis that selected equilibrium is sticky to a within-population
shift in N . Despite exposure to a prior environment in the first half of the session,
longer-run behavior in the second half is not dissimilar from that observed in
the between-subject design. This is indicated by the close proximity of the two
colored/gray line pairs in supergame 20, and the relative distance from the other
pair.47

Overall, we find that:

Result 3 (Between vs. Within). Changing N within subjects as opposed to between
does not substantially alter the qualitative results. We find no evidence that the selected
equilibrium is sticky in the long run as we shift a primitive within the population.

46. When testing differences in initial cooperation rates in supergames 6–10 within each N
(comparing between and within sessions with identical treatment up to this point), we find p= 0.150
for N = 2 and p= 0.981 for N = 4 using t-tests. A joint test across both values of N yields p= 0.353.

47. In Online Appendix B, we offer a more detailed like-with-like comparison of the between-
subject and within-subject results. These additional findings do not indicate differences with the
between-subject results as we move from N = 2 to N = 4. However, contrary to the hypothesis that
the selected equilibrium is sticky, we observe a significant increase in responsiveness to changes in
N (relative to the between-subject treatments) in the 4→ 2 treatment.
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Figure 3. Initial cooperation rates in extensions (by supergame)

5.2. Explicit Coordination

In this second set of extension treatments, we examine the strategic-uncertainty
mechanism underlying the basin-size model. Specifically, we study the extent to which
our results may be influenced by explicit coordination, as free-form communication
can diminish strategic uncertainty by enabling players to reveal their strategic
intentions.48 This analysis is motivated by an empirical finding indicating that
instances of detected collusion in the industry often originate from explicit collusion—
despite the illegality of such meetings.49

We design our “chat” treatments by modifying an environment with the least-collusive
outcomes, represented by the (N=4;X=$9) treatment. In our first chat treatment,
Chat(3/4), the initial ten supergames replicate the conditions of the (N=4;X=9)
treatment. However, in supergames 11–20, we introduce pre-supergame chat between
all four players. The second chat treatment, Chat(3/4), mirrors Chat(3/4) in terms
of timing of when the chat is introduced but reduces the continuation probability
to δ′ = 1/2 (this continuation is used across all twenty supergames). The Chat(1/2)
treatment keeps constant the stage-game payoffs and number of players, but lowers
the continuation probability δ to the point that the grim-trigger strategy is only a
knife-edge subgame perfect equilibrium, requiring a critical belief of p?(δ′) = 1 on

48. Our design is not tailored to pinpoint the exact channel through which strategic uncertainty
is reduced. It could be that messages convey the opponent’s reasonableness and understanding of
the game’s tensions. Alternatively, messages might not directly convey information on rationality
but simply reduce social distance, making it easier to trust the other player.

49. See Marshall and Marx (2012) for a more comprehensive treatment.
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Boczoń, Vespa, Weidman & Wilson Testing Strategic Uncertainty 26

the other three players cooperating (and so Equations (4) and (5) also coincide).
Therefore, Chat(1/2) serves as a litmus test for whether explicit coordination can
implement outcomes that are not supportable as a robust equilibrium (that is, with
arbitrarily small trembles in others’ behavior).

In Figure 3(B) we depict initial cooperation rates by supergame, using the (N=4;X=$9)
treatment as a baseline, here labeled NoChat(3/4).50 The figure highlights an
unambiguous result on the power of explicit coordination under δ = 3/4: providing
pre-play chat takes the near-zero initial cooperation rate in NoChat(3/4) to almost full
cooperation (98.8 percent, with 80.6 percent ongoing cooperation) in Chat(3/4). Such
high levels of cooperation with communication are inconsistent with the predictions
of the independent-basin model. Therefore, once explicit coordination devices are
allowed for and strategic uncertainty dissipated, our independent basin-size model
becomes redundant. That is, the independent model is only intended for implicit/tacit
coordination.

However, as we shift the continuation probability to the δ′ = 1/2 boundary, even
with pre-play communication, participants find it challenging to sustain cooperation.
While initial cooperation is substantially higher than the baseline without chat
(30.0 percent), ongoing cooperation falls to 4.4 percent (with an ongoing success
rate of 0.2 percent). As such, our second chat treatment indicates that for explicit
communication to play a role, collusion needs to be at least supportable as non-knife
edge equilibrium outcome.

Result 4 (Implicit vs. Explicit). In a multi-player setting, where implicit
cooperation results in near-zero cooperation, explicit coordination leads to very high
levels of cooperation. However, in the limiting case, where cooperation is a knife-edge
subgame perfect equilibrium outcome, even pre-play chat fails to support cooperation.

5.3. Easing Requirements for a Success

In our prior treatments, we find a clear reduction in coordination on the efficient group
outcome as we increase N . However, in our experiments, as we increase the number of
players to four, we are mechanically making it harder to coordinate, as requiring four
cooperators out of four is more stringent than requiring two cooperators out of two. In
our final robustness exercise, we explore an alternative construction of a four-player
game. Specifically, we make it mechanically easier to coordinate by allowing for an
efficient group-wide outcome even if only two out of four players cooperate. At first
sight, relaxing the bar for success in this way suggests that groups will successfully
coordinate at much higher rates. However, as we will show, the basin of attraction

50. Late-session cooperation and success rates (in supergames 16–20 with subject-clustered
standard errors) are provided in Table A.5 in Online Appendix A.
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makes the reverse prediction. The reason for this counter-intuitive prediction is that
making it mechanically easier to attain a cooperative outcome introduces a new
coordination challenge: who will cooperate and who gets to freeride? In fact, this
final extension adds so much strategic uncertainty that our new treatment has a full
basin for always defect. As such, this robustness treatment provides a stark test of
the basin-of-attraction notion as we increase N .

We hold constant the RPD’s 2 × 2 stage-game representation but weaken the
requirement for a success signal to the case where M − 1 or more other players
cooperate, with 1 ≤M ≤ N . Defining the count of cooperative actions for the other
players as CoopCountN−1(a−i) :=

∑
j 6=i 1aj=C , an agent’s signal is given by:

σ(a−i;M,N) =

{
S if CoopCountN−1(a−i) ≥M − 1,

F otherwise,
(6)

where for our original treatments M = N .

Easing a requirement for success makes it structurally easier to generate a group-
wide success. Define Qp(M,N) as the probability of having M cooperators among
N players, where each player chooses to cooperate with probability p. For any fixed
p ∈ (0, 1) we have:51

Qp(M,N) > Qp(M,M) > Qp(N,N). (7)

Although it is mechanically easier to achieve joint success for any fixed cooperation
rate p, weakening the success requirement introduces additional strategic uncertainty.
If an individual believes that the other players select a conditionally cooperative
strategy with probability p, the agent will focus on the following pivotal probability:

qp (M,N) = Pr {M − 1 from N − 1 others choose αGrim; p} .

In all other situations the agent’s action will not affect the long-run outcome: (i)
There will either be fewer than M − 1 others cooperating (with a miscoordination
cost of (1− δ)x to the agent); or (ii) There will be M or more cooperators and group-
wide success will be guaranteed (with a miscoordination cost of x to the agent for the
unnecessary coordination).52 Therefore, best-responding agents will only cooperate
at intermediate values of p. The basin of attraction for always-defect will either be full

51. The second inequality is just pM > pN which follows as M < N . The first inequality
comes from decomposing the probability for a group-wide success to the chance the first M
players jointly cooperate (meaning it must succeed) and a remaining positive probability, so
Qp(M,N) =Qp(M,M) + (1−Qp(M,M)) Pr {M cooperate from N |First M not all cooperators} .
52. The condition for grim to be a best response is:

Pr (Exactly M − 1 choose grim) ≥ x
(1− δ)
δ

+ xPr (More than M − 1 choose grim) .

For full derivation see Online Appendix C.
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Table 4. Basin-effect decomposition: Two-from-four treatment

Group-wide
success

Two-from-four
Compared to:

(N=2;X=$9) (N=4;X=$9)

All rounds 0.255 0.360
(p=0.006)

0.000
(p<0.001)

Initial rounds 0.302 0.280
(p=0.751)

0.000
(p<0.001)

Ongoing rounds 0.223 0.397
(p<0.001)

0.000
(p<0.001)

Results are calculated using data from the last-five supergames. The values in parentheses correspond
to p-values testing differences between the two-for-four treatment and each of the reference treatments. For
the (N=2;X=$9) comparisons we use standard tests of proportion; however, because we have no outcome
variation in (N=4;X=$9), for those tests we use likelihood ratio tests over binomial probabilities.

(all p ∈ [0, 1]) or spread across two disjoint regions (p ∈ [0, p?] ∪ [p?, 1]). A strategic
agent will not want to conditionally cooperate: (i) When others cooperate with low
probability, p ∈ [0, p?], coordination is likely to fail even if they cooperate; or (ii)
When others cooperate with high probability, p ∈ [p?, 1], coordination is likely to
succeed even if they defect. For this reason, if 1 <M <N , perfectly correlated beliefs
result in an always-defect basin size of one for any x > 0 and δ ∈ (0, 1).

Keeping the other parameters constant at X = $9 and δ = 3/4, our final treatment
requires M = 2 cooperators from the group of N = 4 for joint success (which we will
call the two-from-four treatment). While this change makes successes mechanically
easier to obtain than in the (N=2;X=$9) and (N=4;X=$9) treatments, our basin
measure of strategic uncertainty (either independent or correlated) makes the opposite
prediction. In fact, at X = $9 and δ = 3/4, the coordination problem is exacerbated
to such a degree that weakening the requirement for a success leads to theoretically
full basin for always defect.53,54

Results from the two-from-four treatment yield a cooperation rate of 22.7 percent
across all rounds, and a group-wide success rate of 25.5 percent, compared to a
group-wide success rate in the baseline (N=2;X=$9) treatment of 36.0 percent. Hence,
as predicted by our basin calculations, easing the requirement for success significantly
reduces successful coordination (p = 0.006).55

53. At δ = 3/4 the always-defect independent-extension basin is smaller than one for X < X? =
$7.91. For all greater temptations the always-defect basin is full.

54. We conducted three sessions for the two-from-four treatment (with 64 unique participants).
Instructions for this treatment are identical to the four-from-four treatment, except for the
explanation of the success/failure signals.

55. Cooperation at the individual level is also significantly lower in the two-from-four robustness
treatment (p < 0.001), compared to the 46.7 percent cooperation rate observed in the two-player
RPD. However, as we weaken the cooperation requirement for efficiency, our focus is on a more-
comparable measure, successful coordination in the group.
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This directional success in a counter-intuitive direction certainly suggests that part of
the additional difficulty in coordinating is captured by the basin. However, the basin
measure fails to order the success rates for the two-from-four treatment relative to the
(N=4;X=$9) treatment. While this certainly motivates further research, some caution
is warranted. As shown in Figure 2(B) the ongoing cooperation rate in the two-from-
four treatment (marked with an empty circles) is not far from what we might expect
from the meta-study in RPD games where cooperation is not an equilibrium (basin
size of one). In contrast, as we highlighted earlier, the (N=4;X=$9) treatment with an
ongoing cooperation rate that is almost at zero represents the only treatment that is
notably far from the meta-study.

One possible explanation for the result is the stark nature of feedback and learning
in the (N=4;X=$9) game. With a cooperation rate of 25 percent (approximately the
expected value from the meta-study basin), the anticipated group-wide success rate
with four players is merely 0.4 percent. In contrast, even with a lower cooperation
rate of 20 percent in the two-from-four treatment, we would expect a considerably
less extreme group-wide success rate of 18.1 percent.

In summary, we find that:

Result 5 (Easing Requirements for a Success). In a treatment where the set of
players needed for a successful outcome (M = 2) is lower than the group size (N = 4),
the basin-of-attraction extension predicts reduced coordination due to an increase in
strategic uncertainty. The treatment results indicate low cooperation rates in line with
empirical rates observed for extreme basin-values in other RPD experiments. In terms
of successful coordination, the effect from weakening the coordination requirements
matches the basin prediction, with a significant decrease in successful coordination
relative to the treatment where M = N = 2. However, we also find that coordination
is higher than in the M = N = 4 treatment, which runs counter to the prediction.
This finding accentuates the extreme results in our high-tension (X = 9) multi-player
(M = N = 4) game.

6. Conclusion

Our paper examines equilibrium selection in repeated games and the extent to which
it can be predicted with a model of strategic uncertainty. We leverage a model of
equilibrium selection that rationalizes behavior in the two-player RPD and design an
experiment to stress test this specific theoretical model. The predictive model works
by mediating the effects from multiple primitives into a single dimension that captures
strategic uncertainty. As such, even for rich counterfactual policies with many changes
to the setting, the model can still generate a directional prediction. We introduce a
novel source of strategic uncertainty that has not yet been studied in the RPD setting
(the number of players), while also manipulating a payoff parameter. Therefore, we
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can change both sources of strategic uncertainty simultaneously and study the extent
to which the evidence is consistent with the predictions of the selection model.

Our main finding is that the model of equilibrium selection can indeed be used as
a device to understand successful ongoing coordination on the collusive outcome.
In particular, the model performs well in trading off the competing effects from
the two distinct sources of strategic uncertainty. Meanwhile, we also document that
the model is less successful in predicting initial cooperation rates. Outside of the
laboratory, observing the initial round of cooperation can be challenging, but there is
more hope that policymakers can observe features of ongoing interactions. Naturally,
our game is highly stylized, but it suggests that further research that tests this model
of equilibrium selection in more realistic settings may be useful for policy. Given the
primitives of an environment, the basin-of-attraction model may be able to predict for
what situations ongoing collusion is more likely to emerge. This information might be
useful for antitrust authorities to decide which industries to allocate more attention
to.

After illustrating the theoretical power of the model for implicit coordination, we turn
to several application-motivated extensions that probe the model’s limitations. We
first show that results continue to hold when manipulations are introduced within the
same population. We next document that if subjects are provided with a tool that
reduces strategic uncertainty (pre-play chat), the selection model is inappropriate
for predicting behavior. That is, the model fails to predict when collusion can be
explicitly coordinated. We finally demonstrate that easing cooperation requirements,
specifically by stipulating that a subset of players is sufficient to achieve the efficient
outcome, does not necessarily promote collusion. This can occur because, with
a subset of players being adequate for the efficient outcome, additional strategic
uncertainty arises regarding which individuals will cooperate and who may free-ride.
The model captures this extra source of strategic uncertainty, predicting decreased
cooperation

Taking a step back, a shortcoming of any experimental paper is that conclusions are
specific to the chosen environment and parameterizations. Ideally, one would want
to evaluate the criterion for equilibrium selection in a large set of repeated games,
and in each set for several possible parameterizations. While this goal is outside the
scope of the paper, we now outline how we plan to address this in a companion paper
(Boczoń, Vespa, and Wilson, 2024) that lays out a possible path for future research
in this area.

The idea is that one can evaluate the performance of artificial intelligence algorithms
(AIAs) that companies use for pricing decisions (Calvano, Calzolari, Denicolo, and
Pastorello, 2020; Asker, Fershtman, and Pakes, 2021) within the RPD setting. The
companion paper shows that the experimental results for both the previous RPD
literature and our main environments with N > 2 can be replicated with AIAs. Given
that we find a qualitative and a quantitative match between the long-run behavior
of AIAs and our lab participants, the former can be used to predict behavior of

Journal of the European Economic Association
Preprint prepared on 21 June 2024 using jeea.cls v1.0.
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human subjects in counterfactual environments that are not directly studied in the
laboratory. Although not as analytically tractable as our basin calculation, such AIAs
can be used to expand the scope of experimental studies if partially validated on the
narrower domains studied within the laboratory.
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Agranov, Marina, Guillaume R Fréchette, Thomas R Palfrey, and Emanuel Vespa (2016), “Static
and dynamic underinvestment: An experimental investigation.” Journal of Public Economics,
143, 125–141.

Asker, John, Chaim Fershtman, and Ariel Pakes (2021), “Artificial intelligence and pricing: The
impact of algorithm design.” National Bureau of Economic Research.

Battaglini, Marco, Salvatore Nunnari, and Thomas R Palfrey (2012), “Legislative bargaining and
the dynamics of public investment.” American Political Science Review, 106, 407–429.

Battaglini, Marco, Salvatore Nunnari, and Thomas R Palfrey (2016), “The dynamic free rider
problem: A laboratory study.” American Economic Journal: Microeconomics, 8, 268–308.

Battalio, Raymond, Larry Samuelson, and John Van Huyck (2001), “Optimization incentives and
coordination failure in laboratory stag hunt games.” Econometrica, 69, 749–764.

Berry, James, Lucas C Coffman, Douglas Hanley, Rania Gihleb, and Alistair J Wilson (2017),
“Assessing the rate of replication in economics.” American Economic Review, 107, 27–31.

Blonski, Matthias and Giancarlo Spagnolo (2015), “Prisoners’ other dilemma.” International
Journal of Game Theory, 44, 61–81.
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